R
↳Dependency Pair Analysis
F(g(x), a) -> F(x, g(a))
F(g(x), g(y)) -> H(g(y), x, g(y))
H(g(x), y, z) -> F(y, h(x, y, z))
H(g(x), y, z) -> H(x, y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
H(g(x), y, z) -> H(x, y, z)
H(g(x), y, z) -> F(y, h(x, y, z))
F(g(x), g(y)) -> H(g(y), x, g(y))
F(g(x), a) -> F(x, g(a))
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
innermost
F(g(x), a) -> F(x, g(a))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
POL(g(x1)) = 0 POL(h(x1, x2, x3)) = x3 POL(a) = 1 POL(H(x1, x2, x3)) = x3 POL(f(x1, x2)) = 0 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
H(g(x), y, z) -> H(x, y, z)
H(g(x), y, z) -> F(y, h(x, y, z))
F(g(x), g(y)) -> H(g(y), x, g(y))
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
innermost
two new Dependency Pairs are created:
H(g(x), y, z) -> F(y, h(x, y, z))
H(g(g(x'')), y'', z'') -> F(y'', f(y'', h(x'', y'', z'')))
H(g(a), y'', z'') -> F(y'', z'')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Remaining Obligation(s)
H(g(a), y'', z'') -> F(y'', z'')
F(g(x), g(y)) -> H(g(y), x, g(y))
H(g(g(x'')), y'', z'') -> F(y'', f(y'', h(x'', y'', z'')))
H(g(x), y, z) -> H(x, y, z)
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
innermost