R
↳Dependency Pair Analysis
A(b(x)) -> A(a(x))
A(b(x)) -> A(x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
a(b(x)) -> b(b(a(a(x))))
innermost
one new Dependency Pair is created:
A(b(x)) -> A(a(x))
A(b(b(x''))) -> A(b(b(a(a(x'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Forward Instantiation Transformation
A(b(b(x''))) -> A(b(b(a(a(x'')))))
A(b(x)) -> A(x)
a(b(x)) -> b(b(a(a(x))))
innermost
two new Dependency Pairs are created:
A(b(x)) -> A(x)
A(b(b(x''))) -> A(b(x''))
A(b(b(b(x'''')))) -> A(b(b(x'''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
A(b(b(b(x'''')))) -> A(b(b(x'''')))
A(b(b(x''))) -> A(b(x''))
A(b(b(x''))) -> A(b(b(a(a(x'')))))
a(b(x)) -> b(b(a(a(x))))
innermost
two new Dependency Pairs are created:
A(b(b(x''))) -> A(b(x''))
A(b(b(b(x'''')))) -> A(b(b(x'''')))
A(b(b(b(b(x''''''))))) -> A(b(b(b(x''''''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Remaining Obligation(s)
A(b(b(b(b(x''''''))))) -> A(b(b(b(x''''''))))
A(b(b(b(x'''')))) -> A(b(b(x'''')))
A(b(b(x''))) -> A(b(b(a(a(x'')))))
A(b(b(b(x'''')))) -> A(b(b(x'''')))
a(b(x)) -> b(b(a(a(x))))
innermost