Term Rewriting System R:
[x]
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x

Innermost Termination of R to be shown.



   TRS
Reversing
Rev
DPs




Rule(s) before reversing:

a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x


Rule(s) after reversing:

b'(a'(x)) -> a'(a'(b'(x)))
b'(v'(x)) -> x
a'(c'(x)) -> c'(c'(a'(x)))
a'(u'(x)) -> x
u'(a'(x)) -> x
c'(b'(x)) -> b'(b'(c'(x)))
c'(w'(x)) -> x
v'(b'(x)) -> x
w'(c'(x)) -> x





Trying another alternative:
   TRS
Rev
Reversing
DPs




Rule(s) before reversing:

a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x


Rule(s) after reversing:

b'(a'(x)) -> a'(a'(b'(x)))
b'(v'(x)) -> x
a'(c'(x)) -> c'(c'(a'(x)))
a'(u'(x)) -> x
u'(a'(x)) -> x
c'(b'(x)) -> b'(b'(c'(x)))
c'(w'(x)) -> x
v'(b'(x)) -> x
w'(c'(x)) -> x





Trying another alternative:
   TRS
Rev
Rev
Dependency Pair Analysis



R contains the following Dependency Pairs:

A(b(x)) -> B(a(a(x)))
A(b(x)) -> A(a(x))
A(b(x)) -> A(x)
B(c(x)) -> C(b(b(x)))
B(c(x)) -> B(b(x))
B(c(x)) -> B(x)
C(a(x)) -> A(c(c(x)))
C(a(x)) -> C(c(x))
C(a(x)) -> C(x)

Furthermore, R contains one SCC.


   TRS
Rev
Rev
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pairs:

B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))


Rules:


a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   TRS
Rev
Rev
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Modular Removal of Rules


Dependency Pairs:

B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))


Rules:


a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(v(x)) -> x
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x


Strategy:

innermost




We have the following set of usable rules:

a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(v(x)) -> x
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(c(x1))=  x1  
  POL(C(x1))=  x1  
  POL(B(x1))=  x1  
  POL(v(x1))=  1 + x1  
  POL(b(x1))=  x1  
  POL(a(x1))=  x1  
  POL(w(x1))=  1 + x1  
  POL(A(x1))=  x1  
  POL(u(x1))=  1 + x1  

We have the following set D of usable symbols: {c, C, B, b, a, A}
No Dependency Pairs can be deleted.
The following rules can be deleted as they contain symbols in their lhs which do not occur in D:

a(u(x)) -> x
b(v(x)) -> x
c(w(x)) -> x


The result of this processor delivers one new DP problem.



   TRS
Rev
Rev
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
MRR
             ...
               →DP Problem 3
Negative Polynomial Order


Dependency Pairs:

B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))


Rules:


a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))


Strategy:

innermost




The following Dependency Pairs can be strictly oriented using the given order.

B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
B(c(x)) -> C(b(b(x)))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

a(b(x)) -> b(a(a(x)))
c(a(x)) -> a(c(c(x)))
b(c(x)) -> c(b(b(x)))


Used ordering:
Polynomial Order with Interpretation:

POL( B(x1) ) = x1

POL( c(x1) ) = x1 + 1

POL( A(x1) ) = 0

POL( a(x1) ) = 0

POL( C(x1) ) = 0

POL( b(x1) ) = x1


This results in one new DP problem.


   TRS
Rev
Rev
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
MRR
             ...
               →DP Problem 4
Dependency Graph


Dependency Pairs:

C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
A(b(x)) -> B(a(a(x)))


Rules:


a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))


Strategy:

innermost




Using the Dependency Graph the DP problem was split into 2 DP problems.


   TRS
Rev
Rev
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
MRR
             ...
               →DP Problem 5
Negative Polynomial Order


Dependency Pairs:

A(b(x)) -> A(x)
A(b(x)) -> A(a(x))


Rules:


a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))


Strategy:

innermost




The following Dependency Pairs can be strictly oriented using the given order.

A(b(x)) -> A(x)
A(b(x)) -> A(a(x))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

a(b(x)) -> b(a(a(x)))
c(a(x)) -> a(c(c(x)))
b(c(x)) -> c(b(b(x)))


Used ordering:
Polynomial Order with Interpretation:

POL( A(x1) ) = x1

POL( b(x1) ) = x1 + 1

POL( a(x1) ) = x1

POL( c(x1) ) = 0


This results in one new DP problem.


   TRS
Rev
Rev
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
MRR
             ...
               →DP Problem 7
Dependency Graph


Dependency Pair:


Rules:


a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   TRS
Rev
Rev
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
MRR
             ...
               →DP Problem 6
Negative Polynomial Order


Dependency Pairs:

C(a(x)) -> C(c(x))
C(a(x)) -> C(x)


Rules:


a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))


Strategy:

innermost




The following Dependency Pairs can be strictly oriented using the given order.

C(a(x)) -> C(c(x))
C(a(x)) -> C(x)


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

a(b(x)) -> b(a(a(x)))
c(a(x)) -> a(c(c(x)))
b(c(x)) -> c(b(b(x)))


Used ordering:
Polynomial Order with Interpretation:

POL( C(x1) ) = x1

POL( a(x1) ) = x1 + 1

POL( c(x1) ) = x1

POL( b(x1) ) = 0


This results in one new DP problem.

Innermost Termination of R successfully shown.
Duration:
0:04 minutes