TRS
↳Reversing
↳Rev
↳DPs
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
b'(a'(x)) -> a'(a'(b'(x)))
b'(v'(x)) -> x
a'(c'(x)) -> c'(c'(a'(x)))
a'(u'(x)) -> x
u'(a'(x)) -> x
c'(b'(x)) -> b'(b'(c'(x)))
c'(w'(x)) -> x
v'(b'(x)) -> x
w'(c'(x)) -> x
TRS
↳Rev
↳Reversing
↳DPs
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
b'(a'(x)) -> a'(a'(b'(x)))
b'(v'(x)) -> x
a'(c'(x)) -> c'(c'(a'(x)))
a'(u'(x)) -> x
u'(a'(x)) -> x
c'(b'(x)) -> b'(b'(c'(x)))
c'(w'(x)) -> x
v'(b'(x)) -> x
w'(c'(x)) -> x
TRS
↳Rev
↳Rev
↳Dependency Pair Analysis
A(b(x)) -> B(a(a(x)))
A(b(x)) -> A(a(x))
A(b(x)) -> A(x)
B(c(x)) -> C(b(b(x)))
B(c(x)) -> B(b(x))
B(c(x)) -> B(x)
C(a(x)) -> A(c(c(x)))
C(a(x)) -> C(c(x))
C(a(x)) -> C(x)
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Modular Removal of Rules
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(v(x)) -> x
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(v(x)) -> x
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(B(x1)) = x1 POL(v(x1)) = 1 + x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(w(x1)) = 1 + x1 POL(A(x1)) = x1 POL(u(x1)) = 1 + x1
a(u(x)) -> x
b(v(x)) -> x
c(w(x)) -> x
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳MRR
...
→DP Problem 3
↳Negative Polynomial Order
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))
a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
innermost
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
B(c(x)) -> C(b(b(x)))
a(b(x)) -> b(a(a(x)))
c(a(x)) -> a(c(c(x)))
b(c(x)) -> c(b(b(x)))
POL( B(x1) ) = x1
POL( c(x1) ) = x1 + 1
POL( A(x1) ) = 0
POL( a(x1) ) = 0
POL( C(x1) ) = 0
POL( b(x1) ) = x1
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳MRR
...
→DP Problem 4
↳Dependency Graph
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
A(b(x)) -> B(a(a(x)))
a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
innermost
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳MRR
...
→DP Problem 5
↳Negative Polynomial Order
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
innermost
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
a(b(x)) -> b(a(a(x)))
c(a(x)) -> a(c(c(x)))
b(c(x)) -> c(b(b(x)))
POL( A(x1) ) = x1
POL( b(x1) ) = x1 + 1
POL( a(x1) ) = x1
POL( c(x1) ) = 0
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳MRR
...
→DP Problem 7
↳Dependency Graph
a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
innermost
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳MRR
...
→DP Problem 6
↳Negative Polynomial Order
C(a(x)) -> C(c(x))
C(a(x)) -> C(x)
a(b(x)) -> b(a(a(x)))
b(c(x)) -> c(b(b(x)))
c(a(x)) -> a(c(c(x)))
innermost
C(a(x)) -> C(c(x))
C(a(x)) -> C(x)
a(b(x)) -> b(a(a(x)))
c(a(x)) -> a(c(c(x)))
b(c(x)) -> c(b(b(x)))
POL( C(x1) ) = x1
POL( a(x1) ) = x1 + 1
POL( c(x1) ) = x1
POL( b(x1) ) = 0