R
↳Dependency Pair Analysis
A(b(x)) -> B(a(a(x)))
A(b(x)) -> A(a(x))
A(b(x)) -> A(x)
B(c(x)) -> C(b(b(x)))
B(c(x)) -> B(b(x))
B(c(x)) -> B(x)
C(a(x)) -> A(c(c(x)))
C(a(x)) -> C(c(x))
C(a(x)) -> C(x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
A(b(x)) -> B(a(a(x)))
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
two new Dependency Pairs are created:
A(b(x)) -> B(a(a(x)))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(u(x''))) -> B(a(x''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
A(b(u(x''))) -> B(a(x''))
B(c(x)) -> B(b(x))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
A(b(x)) -> A(a(x))
C(a(x)) -> A(c(c(x)))
B(c(x)) -> C(b(b(x)))
B(c(x)) -> B(x)
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
two new Dependency Pairs are created:
A(b(x)) -> A(a(x))
A(b(b(x''))) -> A(b(a(a(x''))))
A(b(u(x''))) -> A(x'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
A(b(u(x''))) -> A(x'')
A(b(b(x''))) -> A(b(a(a(x''))))
A(b(u(x''))) -> B(a(x''))
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
C(a(x)) -> C(c(x))
B(c(x)) -> C(b(b(x)))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
C(a(x)) -> A(c(c(x)))
C(a(x)) -> C(x)
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
two new Dependency Pairs are created:
B(c(x)) -> C(b(b(x)))
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(v(x''))) -> C(b(x''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
A(b(b(x''))) -> A(b(a(a(x''))))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
B(c(v(x''))) -> C(b(x''))
A(b(u(x''))) -> B(a(x''))
C(a(x)) -> A(c(c(x)))
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
B(c(x)) -> B(b(x))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
A(b(u(x''))) -> A(x'')
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
two new Dependency Pairs are created:
B(c(x)) -> B(b(x))
B(c(c(x''))) -> B(c(b(b(x''))))
B(c(v(x''))) -> B(x'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
A(b(u(x''))) -> A(x'')
B(c(v(x''))) -> B(x'')
B(c(c(x''))) -> B(c(b(b(x''))))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
B(c(v(x''))) -> C(b(x''))
A(b(u(x''))) -> B(a(x''))
C(a(x)) -> A(c(c(x)))
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
A(b(b(x''))) -> A(b(a(a(x''))))
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
two new Dependency Pairs are created:
C(a(x)) -> A(c(c(x)))
C(a(a(x''))) -> A(c(a(c(c(x'')))))
C(a(w(x''))) -> A(c(x''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
B(c(v(x''))) -> B(x'')
B(c(c(x''))) -> B(c(b(b(x''))))
A(b(b(x''))) -> A(b(a(a(x''))))
C(a(w(x''))) -> A(c(x''))
B(c(v(x''))) -> C(b(x''))
A(b(u(x''))) -> B(a(x''))
C(a(a(x''))) -> A(c(a(c(c(x'')))))
C(a(x)) -> C(x)
C(a(x)) -> C(c(x))
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
A(b(u(x''))) -> A(x'')
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
two new Dependency Pairs are created:
C(a(x)) -> C(c(x))
C(a(a(x''))) -> C(a(c(c(x''))))
C(a(w(x''))) -> C(x'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Polynomial Ordering
C(a(w(x''))) -> C(x'')
C(a(a(x''))) -> C(a(c(c(x''))))
A(b(u(x''))) -> A(x'')
A(b(b(x''))) -> A(b(a(a(x''))))
B(c(c(x''))) -> B(c(b(b(x''))))
A(b(u(x''))) -> B(a(x''))
C(a(w(x''))) -> A(c(x''))
B(c(v(x''))) -> C(b(x''))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
C(a(a(x''))) -> A(c(a(c(c(x'')))))
C(a(x)) -> C(x)
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
B(c(v(x''))) -> B(x'')
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
A(b(u(x''))) -> A(x'')
A(b(u(x''))) -> B(a(x''))
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(v(x1)) = x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(w(x1)) = x1 POL(u(x1)) = 1 + x1 POL(A(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Polynomial Ordering
C(a(w(x''))) -> C(x'')
C(a(a(x''))) -> C(a(c(c(x''))))
A(b(b(x''))) -> A(b(a(a(x''))))
B(c(c(x''))) -> B(c(b(b(x''))))
C(a(w(x''))) -> A(c(x''))
B(c(v(x''))) -> C(b(x''))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
C(a(a(x''))) -> A(c(a(c(c(x'')))))
C(a(x)) -> C(x)
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
B(c(v(x''))) -> B(x'')
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
C(a(w(x''))) -> C(x'')
C(a(w(x''))) -> A(c(x''))
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(v(x1)) = x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(w(x1)) = 1 + x1 POL(u(x1)) = 1 + x1 POL(A(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 9
↳Polynomial Ordering
C(a(a(x''))) -> C(a(c(c(x''))))
A(b(b(x''))) -> A(b(a(a(x''))))
B(c(c(x''))) -> B(c(b(b(x''))))
B(c(v(x''))) -> C(b(x''))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
C(a(a(x''))) -> A(c(a(c(c(x'')))))
C(a(x)) -> C(x)
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
B(c(v(x''))) -> B(x'')
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost
B(c(v(x''))) -> C(b(x''))
B(c(v(x''))) -> B(x'')
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(v(x1)) = 1 + x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(w(x1)) = 1 + x1 POL(u(x1)) = 1 + x1 POL(A(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 10
↳Remaining Obligation(s)
C(a(a(x''))) -> C(a(c(c(x''))))
A(b(b(x''))) -> A(b(a(a(x''))))
B(c(c(x''))) -> B(c(b(b(x''))))
A(b(b(x''))) -> B(a(b(a(a(x'')))))
A(b(x)) -> A(x)
C(a(a(x''))) -> A(c(a(c(c(x'')))))
C(a(x)) -> C(x)
B(c(c(x''))) -> C(b(c(b(b(x'')))))
B(c(x)) -> B(x)
a(b(x)) -> b(a(a(x)))
a(u(x)) -> x
b(c(x)) -> c(b(b(x)))
b(v(x)) -> x
c(a(x)) -> a(c(c(x)))
c(w(x)) -> x
u(a(x)) -> x
v(b(x)) -> x
w(c(x)) -> x
innermost