Term Rewriting System R:
[y, x, z]
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(.(nil, y)) -> F(y)
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
G(.(x, nil)) -> G(x)
G(.(x, .(y, z))) -> G(.(.(x, y), z))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pairs:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))
F(.(nil, y)) -> F(y)


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(.(nil, y)) -> F(y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(nil)=  1  
  POL(.(x1, x2))=  x1 + x2  
  POL(F(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
.(x1, x2) -> .(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(.(x1))=  1 + x1  
  POL(F(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
.(x1, x2) -> .(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
AFS
             ...
               →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

G(.(x, .(y, z))) -> G(.(.(x, y), z))
G(.(x, nil)) -> G(x)


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(.(x, nil)) -> G(x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  1 + x1  
  POL(nil)=  1  
  POL(.(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
.(x1, x2) -> .(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Argument Filtering and Ordering


Dependency Pair:

G(.(x, .(y, z))) -> G(.(.(x, y), z))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(.(x, .(y, z))) -> G(.(.(x, y), z))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  1 + x1  
  POL(.(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
.(x1, x2) -> .(x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
AFS
             ...
               →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes