R
↳Dependency Pair Analysis
F(.(nil, y)) -> F(y)
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
G(.(x, nil)) -> G(x)
G(.(x, .(y, z))) -> G(.(.(x, y), z))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
F(.(nil, y)) -> F(y)
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
two new Dependency Pairs are created:
F(.(nil, y)) -> F(y)
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
two new Dependency Pairs are created:
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
two new Dependency Pairs are created:
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(.(nil, .(.(x'''''', y''''''), y''''0)), z'')) -> F(.(nil, .(.(.(x'''''', y''''''), y''''0), z'')))
F(.(.(nil, .(nil, nil)), z'')) -> F(.(nil, .(.(nil, nil), z'')))
F(.(.(nil, .(nil, .(x'''''''', y''''''''))), z'')) -> F(.(nil, .(.(nil, .(x'''''''', y'''''''')), z'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
F(.(.(nil, .(nil, .(x'''''''', y''''''''))), z'')) -> F(.(nil, .(.(nil, .(x'''''''', y'''''''')), z'')))
F(.(.(nil, .(nil, nil)), z'')) -> F(.(nil, .(.(nil, nil), z'')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(.(nil, .(.(x'''''', y''''''), y''''0)), z'')) -> F(.(nil, .(.(.(x'''''', y''''''), y''''0), z'')))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
POL(nil) = 0 POL(.(x1, x2)) = 1 + x1 + x2 POL(F(x1)) = 1 + x1
F(x1) -> F(x1)
.(x1, x2) -> .(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 2
↳FwdInst
F(.(.(nil, .(nil, .(x'''''''', y''''''''))), z'')) -> F(.(nil, .(.(nil, .(x'''''''', y'''''''')), z'')))
F(.(.(nil, .(nil, nil)), z'')) -> F(.(nil, .(.(nil, nil), z'')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(.(nil, .(.(x'''''', y''''''), y''''0)), z'')) -> F(.(nil, .(.(.(x'''''', y''''''), y''''0), z'')))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
POL(.(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
F(x1) -> F(x1)
.(x1, x2) -> .(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 2
↳FwdInst
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
G(.(x, .(y, z))) -> G(.(.(x, y), z))
G(.(x, nil)) -> G(x)
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
two new Dependency Pairs are created:
G(.(x, nil)) -> G(x)
G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳Forward Instantiation Transformation
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(x, .(y, z))) -> G(.(.(x, y), z))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
G(.(x, .(y, z))) -> G(.(.(x, y), z))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
two new Dependency Pairs are created:
G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 17
↳Forward Instantiation Transformation
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
two new Dependency Pairs are created:
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 18
↳Forward Instantiation Transformation
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
three new Dependency Pairs are created:
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(x'', .(.(y''''0, .(y'''''', z'''''')), nil))) -> G(.(.(x'', .(y''''0, .(y'''''', z''''''))), nil))
G(.(x'', .(.(nil, nil), nil))) -> G(.(.(x'', .(nil, nil)), nil))
G(.(x'', .(.(.(y'''''''', z''''''''), nil), nil))) -> G(.(.(x'', .(.(y'''''''', z''''''''), nil)), nil))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 19
↳Argument Filtering and Ordering
G(.(x'', .(.(.(y'''''''', z''''''''), nil), nil))) -> G(.(.(x'', .(.(y'''''''', z''''''''), nil)), nil))
G(.(x'', .(.(nil, nil), nil))) -> G(.(.(x'', .(nil, nil)), nil))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(x'', .(.(y''''0, .(y'''''', z'''''')), nil))) -> G(.(.(x'', .(y''''0, .(y'''''', z''''''))), nil))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
POL(G(x1)) = 1 + x1 POL(nil) = 0 POL(.(x1, x2)) = 1 + x1 + x2
G(x1) -> G(x1)
.(x1, x2) -> .(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 20
↳Dependency Graph
G(.(x'', .(.(.(y'''''''', z''''''''), nil), nil))) -> G(.(.(x'', .(.(y'''''''', z''''''''), nil)), nil))
G(.(x'', .(.(nil, nil), nil))) -> G(.(.(x'', .(nil, nil)), nil))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(x'', .(.(y''''0, .(y'''''', z'''''')), nil))) -> G(.(.(x'', .(y''''0, .(y'''''', z''''''))), nil))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 21
↳Argument Filtering and Ordering
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
POL(G(x1)) = 1 + x1 POL(.(x1)) = 1 + x1
G(x1) -> G(x1)
.(x1, x2) -> .(x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 13
↳FwdInst
...
→DP Problem 22
↳Dependency Graph
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))
innermost