Term Rewriting System R:
[y, x, z]
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(.(nil, y)) -> F(y)
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
G(.(x, nil)) -> G(x)
G(.(x, .(y, z))) -> G(.(.(x, y), z))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))
F(.(nil, y)) -> F(y)


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(nil, y)) -> F(y)
two new Dependency Pairs are created:

F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(.(x, y), z)) -> F(.(x, .(y, z)))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(.(x, y), z)) -> F(.(x, .(y, z)))
three new Dependency Pairs are created:

F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(nil, .(nil, y''))) -> F(.(nil, y''))
two new Dependency Pairs are created:

F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
three new Dependency Pairs are created:

F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 6
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
three new Dependency Pairs are created:

F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 7
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
two new Dependency Pairs are created:

F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 8
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))
three new Dependency Pairs are created:

F(.(.(nil, .(.(x'''''', y''''''), y''''0)), z'')) -> F(.(nil, .(.(.(x'''''', y''''''), y''''0), z'')))
F(.(.(nil, .(nil, nil)), z'')) -> F(.(nil, .(.(nil, nil), z'')))
F(.(.(nil, .(nil, .(x'''''''', y''''''''))), z'')) -> F(.(nil, .(.(nil, .(x'''''''', y'''''''')), z'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 9
Polynomial Ordering
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(.(nil, .(nil, .(x'''''''', y''''''''))), z'')) -> F(.(nil, .(.(nil, .(x'''''''', y'''''''')), z'')))
F(.(.(nil, .(nil, nil)), z'')) -> F(.(nil, .(.(nil, nil), z'')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(.(nil, .(.(x'''''', y''''''), y''''0)), z'')) -> F(.(nil, .(.(.(x'''''', y''''''), y''''0), z'')))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

F(.(nil, .(.(nil, nil), z''''))) -> F(.(.(nil, nil), z''''))
F(.(nil, .(nil, .(.(x'''', y''''), z'''')))) -> F(.(nil, .(.(x'''', y''''), z'''')))
F(.(nil, .(nil, .(nil, y'''')))) -> F(.(nil, .(nil, y'''')))
F(.(nil, .(.(.(x'''', y''''), y''0), z''''))) -> F(.(.(.(x'''', y''''), y''0), z''''))
F(.(nil, .(.(nil, .(x'''''', y'''''')), z''''))) -> F(.(.(nil, .(x'''''', y'''''')), z''''))


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(nil)=  0  
  POL(.(x1, x2))=  1 + x1 + x2  
  POL(F(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 2
FwdInst


Dependency Pairs:

F(.(.(nil, .(nil, .(x'''''''', y''''''''))), z'')) -> F(.(nil, .(.(nil, .(x'''''''', y'''''''')), z'')))
F(.(.(nil, .(nil, nil)), z'')) -> F(.(nil, .(.(nil, nil), z'')))
F(.(.(.(nil, .(x'''''', y'''''')), y0'), z'''')) -> F(.(.(nil, .(x'''''', y'''''')), .(y0', z'''')))
F(.(.(nil, nil), .(.(x'''''', y''''''), z''''''))) -> F(.(nil, .(nil, .(.(x'''''', y''''''), z''''''))))
F(.(.(nil, nil), .(nil, y''''''))) -> F(.(nil, .(nil, .(nil, y''''''))))
F(.(.(.(nil, nil), y0'), z'''')) -> F(.(.(nil, nil), .(y0', z'''')))
F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))
F(.(.(nil, .(.(x'''''', y''''''), y''''0)), z'')) -> F(.(nil, .(.(.(x'''''', y''''''), y''''0), z'')))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 11
Polynomial Ordering
       →DP Problem 2
FwdInst


Dependency Pair:

F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

F(.(.(.(.(x'''', y''''), y''0), y0''), z'''')) -> F(.(.(.(x'''', y''''), y''0), .(y0'', z'''')))


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(.(x1, x2))=  1 + x1  
  POL(F(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 12
Dependency Graph
       →DP Problem 2
FwdInst


Dependency Pair:


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation


Dependency Pairs:

G(.(x, .(y, z))) -> G(.(.(x, y), z))
G(.(x, nil)) -> G(x)


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(x, nil)) -> G(x)
two new Dependency Pairs are created:

G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
Forward Instantiation Transformation


Dependency Pairs:

G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(x, .(y, z))) -> G(.(.(x, y), z))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(x, .(y, z))) -> G(.(.(x, y), z))
three new Dependency Pairs are created:

G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 14
Forward Instantiation Transformation


Dependency Pairs:

G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(.(x'', nil), nil)) -> G(.(x'', nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(.(x'', nil), nil)) -> G(.(x'', nil))
two new Dependency Pairs are created:

G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 15
Forward Instantiation Transformation


Dependency Pairs:

G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(.(x'', .(y'', z'')), nil)) -> G(.(x'', .(y'', z'')))
three new Dependency Pairs are created:

G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 16
Forward Instantiation Transformation


Dependency Pairs:

G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(x'', .(y0, .(y'', z'')))) -> G(.(.(x'', y0), .(y'', z'')))
three new Dependency Pairs are created:

G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 17
Forward Instantiation Transformation


Dependency Pairs:

G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(x', .(nil, nil))) -> G(.(.(x', nil), nil))
two new Dependency Pairs are created:

G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 18
Forward Instantiation Transformation


Dependency Pairs:

G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(.(x', .(.(y'''', z''''), nil))) -> G(.(.(x', .(y'''', z'''')), nil))
three new Dependency Pairs are created:

G(.(x'', .(.(y''''0, .(y'''''', z'''''')), nil))) -> G(.(.(x'', .(y''''0, .(y'''''', z''''''))), nil))
G(.(x'', .(.(nil, nil), nil))) -> G(.(.(x'', .(nil, nil)), nil))
G(.(x'', .(.(.(y'''''''', z''''''''), nil), nil))) -> G(.(.(x'', .(.(y'''''''', z''''''''), nil)), nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 19
Polynomial Ordering


Dependency Pairs:

G(.(x'', .(.(.(y'''''''', z''''''''), nil), nil))) -> G(.(.(x'', .(.(y'''''''', z''''''''), nil)), nil))
G(.(x'', .(.(nil, nil), nil))) -> G(.(.(x'', .(nil, nil)), nil))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(x'', .(.(y''''0, .(y'''''', z'''''')), nil))) -> G(.(.(x'', .(y''''0, .(y'''''', z''''''))), nil))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

G(.(.(x'''', .(nil, nil)), nil)) -> G(.(x'''', .(nil, nil)))
G(.(.(.(x'''', .(y'''', z'''')), nil), nil)) -> G(.(.(x'''', .(y'''', z'''')), nil))
G(.(.(.(x'''', nil), nil), nil)) -> G(.(.(x'''', nil), nil))
G(.(.(x'''', .(y''0, .(y'''', z''''))), nil)) -> G(.(x'''', .(y''0, .(y'''', z''''))))
G(.(.(x'''', .(.(y'''''', z''''''), nil)), nil)) -> G(.(x'''', .(.(y'''''', z''''''), nil)))


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  1 + x1  
  POL(nil)=  0  
  POL(.(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 20
Dependency Graph


Dependency Pairs:

G(.(x'', .(.(.(y'''''''', z''''''''), nil), nil))) -> G(.(.(x'', .(.(y'''''''', z''''''''), nil)), nil))
G(.(x'', .(.(nil, nil), nil))) -> G(.(.(x'', .(nil, nil)), nil))
G(.(x'''', .(y0', .(.(y'''''', z''''''), nil)))) -> G(.(.(x'''', y0'), .(.(y'''''', z''''''), nil)))
G(.(.(x'''''', .(y'''''', z'''''')), .(nil, nil))) -> G(.(.(.(x'''''', .(y'''''', z'''''')), nil), nil))
G(.(.(x'''''', nil), .(nil, nil))) -> G(.(.(.(x'''''', nil), nil), nil))
G(.(x'''', .(y0', .(nil, nil)))) -> G(.(.(x'''', y0'), .(nil, nil)))
G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))
G(.(x'', .(.(y''''0, .(y'''''', z'''''')), nil))) -> G(.(.(x'', .(y''''0, .(y'''''', z''''''))), nil))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




Using the Dependency Graph the DP problem was split into 1 DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 21
Polynomial Ordering


Dependency Pair:

G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(.(x'''', .(y0'', .(y''0, .(y'''', z''''))))) -> G(.(.(x'''', y0''), .(y''0, .(y'''', z''''))))


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  x1  
  POL(.(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 13
FwdInst
             ...
               →DP Problem 22
Dependency Graph


Dependency Pair:


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:02 minutes