Term Rewriting System R:
[y, x, z]
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(.(nil, y)) -> F(y)
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
G(.(x, nil)) -> G(x)
G(.(x, .(y, z))) -> G(.(.(x, y), z))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Remaining


Dependency Pairs:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))
F(.(nil, y)) -> F(y)


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(nil, y)) -> F(y)
two new Dependency Pairs are created:

F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
Remaining


Dependency Pairs:

F(.(nil, .(.(x'', y''), z''))) -> F(.(.(x'', y''), z''))
F(.(nil, .(nil, y''))) -> F(.(nil, y''))
F(.(.(x, y), z)) -> F(.(x, .(y, z)))


Rules:


f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

F(.(.(x, y), z)) -> F(.(x, .(y, z)))
three new Dependency Pairs are created:

F(.(.(.(x'', y''), y0), z'')) -> F(.(.(x'', y''), .(y0, z'')))
F(.(.(nil, nil), z')) -> F(.(nil, .(nil, z')))
F(.(.(nil, .(x'''', y'''')), z')) -> F(.(nil, .(.(x'''', y''''), z')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:00 minutes