Term Rewriting System R:
[x, y]
merge(x, nil) -> x
merge(nil, y) -> y
merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
MERGE(++(x, y), ++(u, v)) -> MERGE(y, ++(u, v))
MERGE(++(x, y), ++(u, v)) -> MERGE(++(x, y), v)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
Dependency Pair:
MERGE(++(x, y), ++(u, v)) -> MERGE(y, ++(u, v))
Rules:
merge(x, nil) -> x
merge(nil, y) -> y
merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v))
Strategy:
innermost
The following dependency pair can be strictly oriented:
MERGE(++(x, y), ++(u, v)) -> MERGE(y, ++(u, v))
There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(v) | = 0 |
POL(++(x1, x2)) | = 1 + x2 |
POL(MERGE(x1, x2)) | = x1 |
POL(u) | = 0 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
merge(x, nil) -> x
merge(nil, y) -> y
merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes