Term Rewriting System R:
[x, y]
merge(x, nil) -> x
merge(nil, y) -> y
merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MERGE(++(x, y), ++(u, v)) -> MERGE(y, ++(u, v))
MERGE(++(x, y), ++(u, v)) -> MERGE(++(x, y), v)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

MERGE(++(x, y), ++(u, v)) -> MERGE(y, ++(u, v))

Rules:

merge(x, nil) -> x
merge(nil, y) -> y
merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v))

Strategy:

innermost

The following dependency pair can be strictly oriented:

MERGE(++(x, y), ++(u, v)) -> MERGE(y, ++(u, v))

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MERGE(x1, x2) -> MERGE(x1, x2)
++(x1, x2) -> ++(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

merge(x, nil) -> x
merge(nil, y) -> y
merge(++(x, y), ++(u, v)) -> ++(x, merge(y, ++(u, v)))
merge(++(x, y), ++(u, v)) -> ++(u, merge(++(x, y), v))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes