R
↳Dependency Pair Analysis
INT(0, s(y)) -> INT(s(0), s(y))
INT(s(x), s(y)) -> INTLIST(int(x, y))
INT(s(x), s(y)) -> INT(x, y)
INTLIST(.(x, y)) -> INTLIST(y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
INTLIST(.(x, y)) -> INTLIST(y)
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
one new Dependency Pair is created:
INTLIST(.(x, y)) -> INTLIST(y)
INTLIST(.(x, .(x'', y''))) -> INTLIST(.(x'', y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
INTLIST(.(x, .(x'', y''))) -> INTLIST(.(x'', y''))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
one new Dependency Pair is created:
INTLIST(.(x, .(x'', y''))) -> INTLIST(.(x'', y''))
INTLIST(.(x, .(x'''', .(x''''', y'''')))) -> INTLIST(.(x'''', .(x''''', y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
INTLIST(.(x, .(x'''', .(x''''', y'''')))) -> INTLIST(.(x'''', .(x''''', y'''')))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
INTLIST(.(x, .(x'''', .(x''''', y'''')))) -> INTLIST(.(x'''', .(x''''', y'''')))
POL(INT_LIST(x1)) = 1 + x1 POL(.(x1, x2)) = 1 + x1 + x2
INTLIST(x1) -> INTLIST(x1)
.(x1, x2) -> .(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
INT(s(x), s(y)) -> INT(x, y)
INT(0, s(y)) -> INT(s(0), s(y))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
two new Dependency Pairs are created:
INT(s(x), s(y)) -> INT(x, y)
INT(s(s(x'')), s(s(y''))) -> INT(s(x''), s(y''))
INT(s(0), s(s(y''))) -> INT(0, s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 7
↳FwdInst
INT(s(0), s(s(y''))) -> INT(0, s(y''))
INT(0, s(y)) -> INT(s(0), s(y))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
one new Dependency Pair is created:
INT(0, s(y)) -> INT(s(0), s(y))
INT(0, s(s(y''''))) -> INT(s(0), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 7
↳FwdInst
INT(0, s(s(y''''))) -> INT(s(0), s(s(y'''')))
INT(s(0), s(s(y''))) -> INT(0, s(y''))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
one new Dependency Pair is created:
INT(s(0), s(s(y''))) -> INT(0, s(y''))
INT(s(0), s(s(s(y'''''')))) -> INT(0, s(s(y'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 7
↳FwdInst
INT(s(0), s(s(s(y'''''')))) -> INT(0, s(s(y'''''')))
INT(0, s(s(y''''))) -> INT(s(0), s(s(y'''')))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
one new Dependency Pair is created:
INT(0, s(s(y''''))) -> INT(s(0), s(s(y'''')))
INT(0, s(s(s(y'''''''')))) -> INT(s(0), s(s(s(y''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 7
↳FwdInst
INT(0, s(s(s(y'''''''')))) -> INT(s(0), s(s(s(y''''''''))))
INT(s(0), s(s(s(y'''''')))) -> INT(0, s(s(y'''''')))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
INT(s(0), s(s(s(y'''''')))) -> INT(0, s(s(y'''''')))
POL(s(x1)) = 1 + x1
INT(x1, x2) -> x2
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
→DP Problem 7
↳FwdInst
INT(0, s(s(s(y'''''''')))) -> INT(s(0), s(s(s(y''''''''))))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
INT(s(s(x'')), s(s(y''))) -> INT(s(x''), s(y''))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
one new Dependency Pair is created:
INT(s(s(x'')), s(s(y''))) -> INT(s(x''), s(y''))
INT(s(s(s(x''''))), s(s(s(y'''')))) -> INT(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Argument Filtering and Ordering
INT(s(s(s(x''''))), s(s(s(y'''')))) -> INT(s(s(x'''')), s(s(y'''')))
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost
INT(s(s(s(x''''))), s(s(s(y'''')))) -> INT(s(s(x'''')), s(s(y'''')))
POL(s(x1)) = 1 + x1 POL(INT(x1, x2)) = 1 + x1 + x2
INT(x1, x2) -> INT(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
int(0, 0) -> .(0, nil)
int(0, s(y)) -> .(0, int(s(0), s(y)))
int(s(x), 0) -> nil
int(s(x), s(y)) -> intlist(int(x, y))
intlist(nil) -> nil
intlist(.(x, y)) -> .(s(x), intlist(y))
innermost