Term Rewriting System R:
[x, y, z]
rev(nil) -> nil
rev(rev(x)) -> x
rev(++(x, y)) -> ++(rev(y), rev(x))
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)
make(x) -> .(x, nil)

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

REV(++(x, y)) -> ++'(rev(y), rev(x))
REV(++(x, y)) -> REV(y)
REV(++(x, y)) -> REV(x)
++'(.(x, y), z) -> ++'(y, z)
++'(x, ++(y, z)) -> ++'(++(x, y), z)
++'(x, ++(y, z)) -> ++'(x, y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pairs:

++'(x, ++(y, z)) -> ++'(x, y)
++'(x, ++(y, z)) -> ++'(++(x, y), z)
++'(.(x, y), z) -> ++'(y, z)

Rules:

rev(nil) -> nil
rev(rev(x)) -> x
rev(++(x, y)) -> ++(rev(y), rev(x))
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)
make(x) -> .(x, nil)

Strategy:

innermost

The following dependency pairs can be strictly oriented:

++'(x, ++(y, z)) -> ++'(x, y)
++'(x, ++(y, z)) -> ++'(++(x, y), z)

Additionally, the following usable rules for innermost can be oriented:

++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(++'(x1, x2)) =  x2 POL(++(x1, x2)) =  1 + x1 + x2 POL(nil) =  1 POL(.(x1, x2)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 3`
`             ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

++'(.(x, y), z) -> ++'(y, z)

Rules:

rev(nil) -> nil
rev(rev(x)) -> x
rev(++(x, y)) -> ++(rev(y), rev(x))
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)
make(x) -> .(x, nil)

Strategy:

innermost

The following dependency pair can be strictly oriented:

++'(.(x, y), z) -> ++'(y, z)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(++'(x1, x2)) =  x1 POL(.(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 3`
`             ↳Polo`
`             ...`
`               →DP Problem 4`
`                 ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`

Dependency Pair:

Rules:

rev(nil) -> nil
rev(rev(x)) -> x
rev(++(x, y)) -> ++(rev(y), rev(x))
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)
make(x) -> .(x, nil)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`

Dependency Pair:

REV(++(x, y)) -> REV(x)

Rules:

rev(nil) -> nil
rev(rev(x)) -> x
rev(++(x, y)) -> ++(rev(y), rev(x))
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)
make(x) -> .(x, nil)

Strategy:

innermost

The following dependency pair can be strictly oriented:

REV(++(x, y)) -> REV(x)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(REV(x1)) =  x1 POL(++(x1, x2)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 5`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

rev(nil) -> nil
rev(rev(x)) -> x
rev(++(x, y)) -> ++(rev(y), rev(x))
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(x, ++(y, z)) -> ++(++(x, y), z)
make(x) -> .(x, nil)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes