Term Rewriting System R:
[x, y, z, u, v]
if(true, x, y) -> x
if(false, x, y) -> y
if(x, y, y) -> y
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) -> if(x, y, z)
if(x, y, if(x, y, z)) -> if(x, y, z)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(z, u, v)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
IF(if(x, y, z), u, v) -> IF(z, u, v)
IF(if(x, y, z), u, v) -> IF(y, u, v)
Rules:
if(true, x, y) -> x
if(false, x, y) -> y
if(x, y, y) -> y
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) -> if(x, y, z)
if(x, y, if(x, y, z)) -> if(x, y, z)
Strategy:
innermost
As we are in the innermost case, we can delete all 6 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
IF(if(x, y, z), u, v) -> IF(z, u, v)
IF(if(x, y, z), u, v) -> IF(y, u, v)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- IF(if(x, y, z), u, v) -> IF(z, u, v)
- IF(if(x, y, z), u, v) -> IF(y, u, v)
and get the following Size-Change Graph(s): {1, 2} | , | {1, 2} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
which lead(s) to this/these maximal multigraph(s): {1, 2} | , | {1, 2} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
if(x1, x2, x3) -> if(x1, x2, x3)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes