R
↳Dependency Pair Analysis
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(or(x, y)) -> AND(not(x), not(y))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
AND(x, or(y, z)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
innermost
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)
POL(or(x1, x2)) = 1 + x1 + x2 POL(AND(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
innermost
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
POL(and(x1, x2)) = x1 + x2 POL(NOT(x1)) = x1 POL(or(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Polynomial Ordering
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
innermost
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
POL(and(x1, x2)) = 1 + x1 + x2 POL(NOT(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 5
↳Dependency Graph
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))
innermost