Term Rewriting System R:
[x, y, z]
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AND(x, or(y, z)) -> OR(and(x, y), and(x, z))
AND(x, or(y, z)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, and(y, y)) -> AND(x, y)
OR(x, or(y, y)) -> OR(x, y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)


Rules:


and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)


Strategy:

innermost




The following dependency pairs can be strictly oriented:

AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
AND(x1, x2) -> AND(x1, x2)
or(x1, x2) -> or(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes