Term Rewriting System R:
[x, y, z]
not(x) -> xor(x, true)
or(x, y) -> xor(and(x, y), xor(x, y))
implies(x, y) -> xor(and(x, y), xor(x, true))
and(x, true) -> x
and(x, false) -> false
and(x, x) -> x
and(xor(x, y), z) -> xor(and(x, z), and(y, z))
xor(x, false) -> x
xor(x, x) -> false
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
NOT(x) -> XOR(x, true)
OR(x, y) -> XOR(and(x, y), xor(x, y))
OR(x, y) -> AND(x, y)
OR(x, y) -> XOR(x, y)
IMPLIES(x, y) -> XOR(and(x, y), xor(x, true))
IMPLIES(x, y) -> AND(x, y)
IMPLIES(x, y) -> XOR(x, true)
AND(xor(x, y), z) -> XOR(and(x, z), and(y, z))
AND(xor(x, y), z) -> AND(x, z)
AND(xor(x, y), z) -> AND(y, z)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
AND(xor(x, y), z) -> AND(y, z)
AND(xor(x, y), z) -> AND(x, z)
Rules:
not(x) -> xor(x, true)
or(x, y) -> xor(and(x, y), xor(x, y))
implies(x, y) -> xor(and(x, y), xor(x, true))
and(x, true) -> x
and(x, false) -> false
and(x, x) -> x
and(xor(x, y), z) -> xor(and(x, z), and(y, z))
xor(x, false) -> x
xor(x, x) -> false
Strategy:
innermost
As we are in the innermost case, we can delete all 9 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
AND(xor(x, y), z) -> AND(y, z)
AND(xor(x, y), z) -> AND(x, z)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- AND(xor(x, y), z) -> AND(y, z)
- AND(xor(x, y), z) -> AND(x, z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
xor(x1, x2) -> xor(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes