R
↳Dependency Pair Analysis
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x, y), -(x, y))
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(x, y)
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x, y), -(x, y))
-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x, y), -(x, y))
innermost
one new Dependency Pair is created:
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(x, y)
-'(-(neg(-(neg(x'0), neg(x'''))), neg(-(neg(x'0), neg(x''')))), -(neg(-(neg(y'''), neg(y''''))), neg(-(neg(y'''), neg(y''''))))) -> -'(-(neg(x'0), neg(x''')), -(neg(y'''), neg(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Polynomial Ordering
-'(-(neg(-(neg(x'0), neg(x'''))), neg(-(neg(x'0), neg(x''')))), -(neg(-(neg(y'''), neg(y''''))), neg(-(neg(y'''), neg(y''''))))) -> -'(-(neg(x'0), neg(x''')), -(neg(y'''), neg(y'''')))
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x, y), -(x, y))
-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x, y), -(x, y))
innermost
-'(-(neg(-(neg(x'0), neg(x'''))), neg(-(neg(x'0), neg(x''')))), -(neg(-(neg(y'''), neg(y''''))), neg(-(neg(y'''), neg(y''''))))) -> -'(-(neg(x'0), neg(x''')), -(neg(y'''), neg(y'''')))
-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x, y), -(x, y))
POL(-'(x1, x2)) = 1 + x1 POL(neg(x1)) = x1 POL(-(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Polynomial Ordering
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x, y), -(x, y))
-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x, y), -(x, y))
innermost
-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x, y), -(x, y))
-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x, y), -(x, y))
POL(-'(x1, x2)) = x2 POL(neg(x1)) = 1 + x1 POL(-(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Polo
...
→DP Problem 4
↳Dependency Graph
-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x, y), -(x, y))
innermost