-(-(neg(

R

↳Dependency Pair Analysis

-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x,y), -(x,y))

-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(x,y)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

**-'(-(neg( x), neg(x)), -(neg(y), neg(y))) -> -'(x, y)**

-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x,y), -(x,y))

innermost

The following dependency pairs can be strictly oriented:

-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(x,y)

-'(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -'(-(x,y), -(x,y))

The following usable rule for innermost w.r.t. to the AFS can be oriented:

-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x,y), -(x,y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:

trivial

resulting in one new DP problem.

Used Argument Filtering System:

-'(x,_{1}x) -> -'(_{2}x,_{1}x)_{2}

-(x,_{1}x) ->_{2}x_{1}

neg(x) -> neg(_{1}x)_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Dependency Graph

-(-(neg(x), neg(x)), -(neg(y), neg(y))) -> -(-(x,y), -(x,y))

innermost

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes