Term Rewriting System R:
[x, y]
f(0) -> s(0)
f(s(0)) -> s(s(0))
f(s(0)) -> *(s(s(0)), f(0))
f(+(x, s(0))) -> +(s(s(0)), f(x))
f(+(x, y)) -> *(f(x), f(y))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(s(0)) -> F(0)
F(+(x, s(0))) -> F(x)
F(+(x, y)) -> F(x)
F(+(x, y)) -> F(y)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
Dependency Pairs:
F(+(x, y)) -> F(y)
F(+(x, y)) -> F(x)
F(+(x, s(0))) -> F(x)
Rules:
f(0) -> s(0)
f(s(0)) -> s(s(0))
f(s(0)) -> *(s(s(0)), f(0))
f(+(x, s(0))) -> +(s(s(0)), f(x))
f(+(x, y)) -> *(f(x), f(y))
Strategy:
innermost
The following dependency pairs can be strictly oriented:
F(+(x, y)) -> F(y)
F(+(x, y)) -> F(x)
F(+(x, s(0))) -> F(x)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(0) | = 0 |
POL(s(x1)) | = 0 |
POL(F(x1)) | = x1 |
POL(+(x1, x2)) | = 1 + x1 + x2 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
f(0) -> s(0)
f(s(0)) -> s(s(0))
f(s(0)) -> *(s(s(0)), f(0))
f(+(x, s(0))) -> +(s(s(0)), f(x))
f(+(x, y)) -> *(f(x), f(y))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes