R
↳Dependency Pair Analysis
+'(s(x), y) -> S(+(x, y))
+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> P(+(x, y))
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> P(minus(x))
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> S(minus(x))
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
+'(p(x), y) -> +'(x, y)
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
one new Dependency Pair is created:
+'(p(x), y) -> +'(x, y)
+'(p(p(x'')), y'') -> +'(p(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
+'(p(p(x'')), y'') -> +'(p(x''), y'')
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
+'(p(p(x'')), y'') -> +'(p(x''), y'')
p(s(x)) -> x
POL(s(x1)) = x1 POL(+'(x1, x2)) = 1 + x1 + x2 POL(p(x1)) = 1 + x1
+'(x1, x2) -> +'(x1, x2)
p(x1) -> p(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 7
↳AFS
...
→DP Problem 8
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
MINUS(p(x)) -> MINUS(x)
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
one new Dependency Pair is created:
MINUS(p(x)) -> MINUS(x)
MINUS(p(p(x''))) -> MINUS(p(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
MINUS(p(p(x''))) -> MINUS(p(x''))
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
MINUS(p(p(x''))) -> MINUS(p(x''))
p(s(x)) -> x
POL(MINUS(x1)) = 1 + x1 POL(s(x1)) = x1 POL(p(x1)) = 1 + x1
MINUS(x1) -> MINUS(x1)
p(x1) -> p(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 9
↳AFS
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
+'(s(x), y) -> +'(x, y)
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
one new Dependency Pair is created:
+'(s(x), y) -> +'(x, y)
+'(s(s(x'')), y'') -> +'(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
+'(s(s(x'')), y'') -> +'(s(x''), y'')
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
+'(s(s(x'')), y'') -> +'(s(x''), y'')
s(p(x)) -> x
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x1 + x2 POL(p(x1)) = x1
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
p(x1) -> p(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳AFS
...
→DP Problem 12
↳Dependency Graph
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
MINUS(s(x)) -> MINUS(x)
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
one new Dependency Pair is created:
MINUS(s(x)) -> MINUS(x)
MINUS(s(s(x''))) -> MINUS(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 13
↳Argument Filtering and Ordering
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
MINUS(s(s(x''))) -> MINUS(s(x''))
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
MINUS(s(s(x''))) -> MINUS(s(x''))
s(p(x)) -> x
POL(MINUS(x1)) = 1 + x1 POL(s(x1)) = 1 + x1 POL(p(x1)) = x1
MINUS(x1) -> MINUS(x1)
s(x1) -> s(x1)
p(x1) -> p(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 13
↳AFS
...
→DP Problem 14
↳Dependency Graph
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 6
↳FwdInst
*'(p(x), y) -> *'(x, y)
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
one new Dependency Pair is created:
*'(p(x), y) -> *'(x, y)
*'(p(p(x'')), y'') -> *'(p(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 15
↳Argument Filtering and Ordering
→DP Problem 6
↳FwdInst
*'(p(p(x'')), y'') -> *'(p(x''), y'')
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
*'(p(p(x'')), y'') -> *'(p(x''), y'')
p(s(x)) -> x
POL(*'(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1 POL(p(x1)) = 1 + x1
*'(x1, x2) -> *'(x1, x2)
p(x1) -> p(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 15
↳AFS
...
→DP Problem 16
↳Dependency Graph
→DP Problem 6
↳FwdInst
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
*'(s(x), y) -> *'(x, y)
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
one new Dependency Pair is created:
*'(s(x), y) -> *'(x, y)
*'(s(s(x'')), y'') -> *'(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 17
↳Argument Filtering and Ordering
*'(s(s(x'')), y'') -> *'(s(x''), y'')
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
*'(s(s(x'')), y'') -> *'(s(x''), y'')
s(p(x)) -> x
POL(*'(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1 POL(p(x1)) = x1
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)
p(x1) -> p(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳FwdInst
→DP Problem 5
↳FwdInst
→DP Problem 6
↳FwdInst
→DP Problem 17
↳AFS
...
→DP Problem 18
↳Dependency Graph
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost