R
↳Dependency Pair Analysis
+'(s(x), s(y)) -> +'(s(x), +(y, 0))
+'(s(x), s(y)) -> +'(y, 0)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
+'(s(x), s(y)) -> +'(s(x), +(y, 0))
+(0, y) -> y
+(s(x), 0) -> s(x)
+(s(x), s(y)) -> s(+(s(x), +(y, 0)))
innermost
two new Dependency Pairs are created:
+'(s(x), s(y)) -> +'(s(x), +(y, 0))
+'(s(x), s(0)) -> +'(s(x), 0)
+'(s(x), s(s(x''))) -> +'(s(x), s(x''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Forward Instantiation Transformation
+'(s(x), s(s(x''))) -> +'(s(x), s(x''))
+(0, y) -> y
+(s(x), 0) -> s(x)
+(s(x), s(y)) -> s(+(s(x), +(y, 0)))
innermost
one new Dependency Pair is created:
+'(s(x), s(s(x''))) -> +'(s(x), s(x''))
+'(s(x0), s(s(s(x'''')))) -> +'(s(x0), s(s(x'''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Argument Filtering and Ordering
+'(s(x0), s(s(s(x'''')))) -> +'(s(x0), s(s(x'''')))
+(0, y) -> y
+(s(x), 0) -> s(x)
+(s(x), s(y)) -> s(+(s(x), +(y, 0)))
innermost
+'(s(x0), s(s(s(x'''')))) -> +'(s(x0), s(s(x'''')))
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
+(0, y) -> y
+(s(x), 0) -> s(x)
+(s(x), s(y)) -> s(+(s(x), +(y, 0)))
innermost