Term Rewriting System R:
[x, y, z]
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
*'(+(x, y), z) -> +'(*(x, z), *(y, z))
*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
Furthermore, R contains two SCCs.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
Dependency Pair:
+'(+(x, y), z) -> +'(y, z)
Rules:
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
Strategy:
innermost
As we are in the innermost case, we can delete all 5 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
Dependency Pair:
+'(+(x, y), z) -> +'(y, z)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- +'(+(x, y), z) -> +'(y, z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
D_{P}: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
+(x_{1}, x_{2}) -> +(x_{1}, x_{2})
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
Dependency Pairs:
*'(+(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
Rules:
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
Strategy:
innermost
As we are in the innermost case, we can delete all 5 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Size-Change Principle
Dependency Pairs:
*'(+(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- *'(+(x, y), z) -> *'(y, z)
- *'(x, +(y, z)) -> *'(x, z)
- *'(+(x, y), z) -> *'(x, z)
- *'(x, +(y, z)) -> *'(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
D_{P}: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
+(x_{1}, x_{2}) -> +(x_{1}, x_{2})
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes