R
↳Dependency Pair Analysis
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
*'(+(x, y), z) -> +'(*(x, z), *(y, z))
*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
+'(+(x, y), z) -> +'(y, z)
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
one new Dependency Pair is created:
+'(+(x, y), z) -> +'(y, z)
+'(+(x, +(x'', y'')), z'') -> +'(+(x'', y''), z'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
+'(+(x, +(x'', y'')), z'') -> +'(+(x'', y''), z'')
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
+'(+(x, +(x'', y'')), z'') -> +'(+(x'', y''), z'')
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
POL(0) = 0 POL(i(x1)) = x1 POL(+(x1, x2)) = 1 + x1 + x2 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Polo
...
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳FwdInst
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
*'(+(x, y), z) -> *'(y, z)
*'(x, +(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
one new Dependency Pair is created:
*'(x, +(y, z)) -> *'(x, y)
*'(+(x'', y''), +(y0, z)) -> *'(+(x'', y''), y0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
*'(+(x'', y''), +(y0, z)) -> *'(+(x'', y''), y0)
*'(+(x, y), z) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
three new Dependency Pairs are created:
*'(x, +(y, z)) -> *'(x, z)
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(+(x, y), z) -> *'(y, z)
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(+(x, y), z) -> *'(x, z)
*'(+(x'', y''), +(y0, z)) -> *'(+(x'', y''), y0)
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
one new Dependency Pair is created:
*'(+(x, y), z) -> *'(x, z)
*'(+(x', y), +(y'', +(y'''', z''''))) -> *'(x', +(y'', +(y'''', z'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
*'(+(x', y), +(y'', +(y'''', z''''))) -> *'(x', +(y'', +(y'''', z'''')))
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(+(x'', y''), +(y0, z)) -> *'(+(x'', y''), y0)
*'(+(x, y), z) -> *'(y, z)
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
six new Dependency Pairs are created:
*'(+(x, y), z) -> *'(y, z)
*'(+(x, +(x'', y'')), z'') -> *'(+(x'', y''), z'')
*'(+(x, +(x'''', y'''')), +(y0'', z'')) -> *'(+(x'''', y''''), +(y0'', z''))
*'(+(x, y0), +(y'', +(y'''', z''''))) -> *'(y0, +(y'', +(y'''', z'''')))
*'(+(x, +(x'''', y'''')), +(y'', z'''')) -> *'(+(x'''', y''''), +(y'', z''''))
*'(+(x, +(x'''''', y'''''')), +(y'', +(y0'''', z''''))) -> *'(+(x'''''', y''''''), +(y'', +(y0'''', z'''')))
*'(+(x, +(x''', y'')), +(y'''', +(y'''''', z''''''))) -> *'(+(x''', y''), +(y'''', +(y'''''', z'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
*'(+(x, +(x''', y'')), +(y'''', +(y'''''', z''''''))) -> *'(+(x''', y''), +(y'''', +(y'''''', z'''''')))
*'(+(x, +(x'''''', y'''''')), +(y'', +(y0'''', z''''))) -> *'(+(x'''''', y''''''), +(y'', +(y0'''', z'''')))
*'(+(x, +(x'''', y'''')), +(y'', z'''')) -> *'(+(x'''', y''''), +(y'', z''''))
*'(+(x, y0), +(y'', +(y'''', z''''))) -> *'(y0, +(y'', +(y'''', z'''')))
*'(+(x, +(x'''', y'''')), +(y0'', z'')) -> *'(+(x'''', y''''), +(y0'', z''))
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(+(x, +(x'', y'')), z'') -> *'(+(x'', y''), z'')
*'(+(x'', y''), +(y0, z)) -> *'(+(x'', y''), y0)
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(+(x', y), +(y'', +(y'''', z''''))) -> *'(x', +(y'', +(y'''', z'''')))
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
*'(+(x, +(x''', y'')), +(y'''', +(y'''''', z''''''))) -> *'(+(x''', y''), +(y'''', +(y'''''', z'''''')))
*'(+(x, +(x'''''', y'''''')), +(y'', +(y0'''', z''''))) -> *'(+(x'''''', y''''''), +(y'', +(y0'''', z'''')))
*'(+(x, +(x'''', y'''')), +(y'', z'''')) -> *'(+(x'''', y''''), +(y'', z''''))
*'(+(x, y0), +(y'', +(y'''', z''''))) -> *'(y0, +(y'', +(y'''', z'''')))
*'(+(x, +(x'''', y'''')), +(y0'', z'')) -> *'(+(x'''', y''''), +(y0'', z''))
*'(+(x, +(x'', y'')), z'') -> *'(+(x'', y''), z'')
*'(+(x', y), +(y'', +(y'''', z''''))) -> *'(x', +(y'', +(y'''', z'''')))
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
POL(0) = 0 POL(i(x1)) = x1 POL(*'(x1, x2)) = x1 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(+(x'', y''), +(y0, z)) -> *'(+(x'', y''), y0)
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 10
↳Polynomial Ordering
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost
*'(+(x'', y''), +(y, z'')) -> *'(+(x'', y''), z'')
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(+(x'''', y''''), +(y, +(y0'', z''))) -> *'(+(x'''', y''''), +(y0'', z''))
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
POL(0) = 0 POL(i(x1)) = x1 POL(*'(x1, x2)) = x2 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 11
↳Dependency Graph
+(x, 0) -> x
+(x, i(x)) -> 0
+(+(x, y), z) -> +(x, +(y, z))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(+(x, y), z) -> +(*(x, z), *(y, z))
innermost