R
↳Dependency Pair Analysis
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
*'(*(x, y), z) -> *'(y, z)
*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))
innermost
one new Dependency Pair is created:
*'(*(x, y), z) -> *'(y, z)
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Argument Filtering and Ordering
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))
innermost
*'(*(x, *(x'', y'')), z'') -> *'(*(x'', y''), z'')
*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))
POL(i(x1)) = x1 POL(0) = 0 POL(*'(x1, x2)) = 1 + x1 + x2 POL(1) = 0 POL(*(x1, x2)) = 1 + x1 + x2
*'(x1, x2) -> *'(x1, x2)
*(x1, x2) -> *(x1, x2)
i(x1) -> i(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))
innermost