Term Rewriting System R:
[x, y, z]
*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pair:

*'(*(x, y), z) -> *'(y, z)


Rules:


*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

*'(*(x, y), z) -> *'(y, z)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
*(x1, x2) -> *(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


*(i(x), x) -> 1
*(1, y) -> y
*(x, 0) -> 0
*(*(x, y), z) -> *(x, *(y, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes