Term Rewriting System R:
[x, y, z]
+(*(x, y), *(a, y)) -> *(+(x, a), y)
*(*(x, y), z) -> *(x, *(y, z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(*(x, y), *(a, y)) -> *'(+(x, a), y)
+'(*(x, y), *(a, y)) -> +'(x, a)
*'(*(x, y), z) -> *'(x, *(y, z))
*'(*(x, y), z) -> *'(y, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pair:

*'(*(x, y), z) -> *'(y, z)


Rules:


+(*(x, y), *(a, y)) -> *(+(x, a), y)
*(*(x, y), z) -> *(x, *(y, z))


Strategy:

innermost




As we are in the innermost case, we can delete all 2 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Size-Change Principle


Dependency Pair:

*'(*(x, y), z) -> *'(y, z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. *'(*(x, y), z) -> *'(y, z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
*(x1, x2) -> *(x1, x2)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes