Term Rewriting System R:
[x, y, z]
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
MINUS(+(x, y)) -> +'(minus(y), minus(x))
MINUS(+(x, y)) -> MINUS(y)
MINUS(+(x, y)) -> MINUS(x)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
*'(x, minus(y)) -> MINUS(*(x, y))
*'(x, minus(y)) -> *'(x, y)
Furthermore, R contains two SCCs.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
Dependency Pairs:
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(x, y)) -> MINUS(y)
Rules:
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
Strategy:
innermost
As we are in the innermost case, we can delete all 9 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
Dependency Pairs:
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(x, y)) -> MINUS(y)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- MINUS(+(x, y)) -> MINUS(x)
- MINUS(+(x, y)) -> MINUS(y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
+(x1, x2) -> +(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
Dependency Pairs:
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
Rules:
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
Strategy:
innermost
As we are in the innermost case, we can delete all 9 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Size-Change Principle
Dependency Pairs:
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- *'(x, +(y, z)) -> *'(x, z)
- *'(x, +(y, z)) -> *'(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
+(x1, x2) -> +(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes