R
↳Dependency Pair Analysis
MINUS(+(x, y)) -> +'(minus(y), minus(x))
MINUS(+(x, y)) -> MINUS(y)
MINUS(+(x, y)) -> MINUS(x)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
*'(x, minus(y)) -> MINUS(*(x, y))
*'(x, minus(y)) -> *'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(x, y)) -> MINUS(y)
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
one new Dependency Pair is created:
MINUS(+(x, y)) -> MINUS(y)
MINUS(+(x, +(x'', y''))) -> MINUS(+(x'', y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
MINUS(+(x, +(x'', y''))) -> MINUS(+(x'', y''))
MINUS(+(x, y)) -> MINUS(x)
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
two new Dependency Pairs are created:
MINUS(+(x, y)) -> MINUS(x)
MINUS(+(+(x'', y''), y)) -> MINUS(+(x'', y''))
MINUS(+(+(x'', +(x'''', y'''')), y)) -> MINUS(+(x'', +(x'''', y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
MINUS(+(+(x'', +(x'''', y'''')), y)) -> MINUS(+(x'', +(x'''', y'''')))
MINUS(+(+(x'', y''), y)) -> MINUS(+(x'', y''))
MINUS(+(x, +(x'', y''))) -> MINUS(+(x'', y''))
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
MINUS(+(+(x'', +(x'''', y'''')), y)) -> MINUS(+(x'', +(x'''', y'''')))
MINUS(+(+(x'', y''), y)) -> MINUS(+(x'', y''))
MINUS(+(x, +(x'', y''))) -> MINUS(+(x'', y''))
+(x, 0) -> x
+(minus(x), x) -> 0
POL(0) = 0 POL(minus(x1)) = x1 POL(MINUS(x1)) = 1 + x1 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
one new Dependency Pair is created:
*'(x, +(y, z)) -> *'(x, y)
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*'(x, +(y, z)) -> *'(x, z)
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
two new Dependency Pairs are created:
*'(x, +(y, z)) -> *'(x, z)
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost
*'(x', +(y, +(+(y'''', z''''), z''))) -> *'(x', +(+(y'''', z''''), z''))
*'(x'', +(y, +(y'', z''))) -> *'(x'', +(y'', z''))
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
+(x, 0) -> x
+(minus(x), x) -> 0
POL(0) = 0 POL(*'(x1, x2)) = 1 + x1 + x2 POL(minus(x1)) = x1 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
+(x, 0) -> x
+(minus(x), x) -> 0
minus(0) -> 0
minus(minus(x)) -> x
minus(+(x, y)) -> +(minus(y), minus(x))
*(x, 1) -> x
*(x, 0) -> 0
*(x, +(y, z)) -> +(*(x, y), *(x, z))
*(x, minus(y)) -> minus(*(x, y))
innermost