R
↳Dependency Pair Analysis
F(j(x, y), y) -> G(f(x, k(y)))
F(j(x, y), y) -> F(x, k(y))
F(j(x, y), y) -> K(y)
F(x, h1(y, z)) -> H2(0, x, h1(y, z))
G(h2(x, y, h1(z, u))) -> H2(s(x), y, h1(z, u))
H2(x, j(y, h1(z, u)), h1(z, u)) -> H2(s(x), y, h1(s(z), u))
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
→DP Problem 2
↳FwdInst
H2(x, j(y, h1(z, u)), h1(z, u)) -> H2(s(x), y, h1(s(z), u))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
one new Dependency Pair is created:
H2(x, j(y, h1(z, u)), h1(z, u)) -> H2(s(x), y, h1(s(z), u))
H2(s(x''), j(y'', h1(s(z''), u'')), h1(s(z''), u'')) -> H2(s(s(x'')), y'', h1(s(s(z'')), u''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Instantiation Transformation
→DP Problem 2
↳FwdInst
H2(s(x''), j(y'', h1(s(z''), u'')), h1(s(z''), u'')) -> H2(s(s(x'')), y'', h1(s(s(z'')), u''))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
one new Dependency Pair is created:
H2(s(x''), j(y'', h1(s(z''), u'')), h1(s(z''), u'')) -> H2(s(s(x'')), y'', h1(s(s(z'')), u''))
H2(s(s(x'''')), j(y'''', h1(s(s(z'''')), u'''')), h1(s(s(z'''')), u'''')) -> H2(s(s(s(x''''))), y'''', h1(s(s(s(z''''))), u''''))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
H2(s(s(x'''')), j(y'''', h1(s(s(z'''')), u'''')), h1(s(s(z'''')), u'''')) -> H2(s(s(s(x''''))), y'''', h1(s(s(s(z''''))), u''''))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
H2(s(s(x'''')), j(y'''', h1(s(s(z'''')), u'''')), h1(s(s(z'''')), u'''')) -> H2(s(s(s(x''''))), y'''', h1(s(s(s(z''''))), u''''))
POL(h1(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1 POL(j(x1, x2)) = x1 + x2 POL(H2(x1, x2, x3)) = 1 + x1 + x2 + x3
H2(x1, x2, x3) -> H2(x1, x2, x3)
s(x1) -> s(x1)
j(x1, x2) -> j(x1, x2)
h1(x1, x2) -> h1(x1, x2)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Forward Instantiation Transformation
F(j(x, y), y) -> F(x, k(y))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
one new Dependency Pair is created:
F(j(x, y), y) -> F(x, k(y))
F(j(j(x'', y'''), y0), y0) -> F(j(x'', y'''), k(y0))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
F(j(j(x'', y'''), y0), y0) -> F(j(x'', y'''), k(y0))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
one new Dependency Pair is created:
F(j(j(x'', y'''), y0), y0) -> F(j(x'', y'''), k(y0))
F(j(j(j(x'''', y''''''), y'''''), y00), y00) -> F(j(j(x'''', y''''''), y'''''), k(y00))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Argument Filtering and Ordering
F(j(j(j(x'''', y''''''), y'''''), y00), y00) -> F(j(j(x'''', y''''''), y'''''), k(y00))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
F(j(j(j(x'''', y''''''), y'''''), y00), y00) -> F(j(j(x'''', y''''''), y'''''), k(y00))
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
POL(0) = 0 POL(h1(x1, x2)) = x1 + x2 POL(h(x1)) = x1 POL(s(x1)) = x1 POL(j(x1, x2)) = 1 + x1 + x2 POL(F(x1, x2)) = 1 + x1 + x2 POL(k(x1)) = x1
F(x1, x2) -> F(x1, x2)
j(x1, x2) -> j(x1, x2)
k(x1) -> k(x1)
h(x1) -> h(x1)
h1(x1, x2) -> h1(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost