R
↳Dependency Pair Analysis
F(j(x, y), y) -> G(f(x, k(y)))
F(j(x, y), y) -> F(x, k(y))
F(j(x, y), y) -> K(y)
F(x, h1(y, z)) -> H2(0, x, h1(y, z))
G(h2(x, y, h1(z, u))) -> H2(s(x), y, h1(z, u))
H2(x, j(y, h1(z, u)), h1(z, u)) -> H2(s(x), y, h1(s(z), u))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
H2(x, j(y, h1(z, u)), h1(z, u)) -> H2(s(x), y, h1(s(z), u))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
H2(x, j(y, h1(z, u)), h1(z, u)) -> H2(s(x), y, h1(s(z), u))
POL(h1(x1, x2)) = 0 POL(s(x1)) = 0 POL(j(x1, x2)) = 1 + x1 POL(H2(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
F(j(x, y), y) -> F(x, k(y))
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost
F(j(x, y), y) -> F(x, k(y))
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
POL(0) = 0 POL(h1(x1, x2)) = 0 POL(h(x1)) = 0 POL(s(x1)) = 0 POL(j(x1, x2)) = 1 + x1 POL(F(x1, x2)) = x1 POL(k(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)
innermost