R
↳Dependency Pair Analysis
F(s(0), y, z) -> F(0, s(y), s(z))
F(s(x), s(y), 0) -> F(x, y, s(0))
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), s(z)) -> F(x, y, f(s(x), s(y), z))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(0, s(s(y)), s(0)) -> F(0, y, s(0))
F(0, s(0), s(s(z))) -> F(0, s(0), z)
F(0, s(s(y)), s(s(z))) -> F(0, y, f(0, s(s(y)), s(z)))
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
F(0, s(s(y)), s(0)) -> F(0, y, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
one new Dependency Pair is created:
F(0, s(s(y)), s(0)) -> F(0, y, s(0))
F(0, s(s(s(s(y'')))), s(0)) -> F(0, s(s(y'')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
F(0, s(s(s(s(y'')))), s(0)) -> F(0, s(s(y'')), s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
one new Dependency Pair is created:
F(0, s(s(s(s(y'')))), s(0)) -> F(0, s(s(y'')), s(0))
F(0, s(s(s(s(s(s(y'''')))))), s(0)) -> F(0, s(s(s(s(y'''')))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
F(0, s(s(s(s(s(s(y'''')))))), s(0)) -> F(0, s(s(s(s(y'''')))), s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(0, s(s(s(s(s(s(y'''')))))), s(0)) -> F(0, s(s(s(s(y'''')))), s(0))
POL(0) = 1 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
F(0, s(0), s(s(z))) -> F(0, s(0), z)
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
one new Dependency Pair is created:
F(0, s(0), s(s(z))) -> F(0, s(0), z)
F(0, s(0), s(s(s(s(z''))))) -> F(0, s(0), s(s(z'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
F(0, s(0), s(s(s(s(z''))))) -> F(0, s(0), s(s(z'')))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
one new Dependency Pair is created:
F(0, s(0), s(s(s(s(z''))))) -> F(0, s(0), s(s(z'')))
F(0, s(0), s(s(s(s(s(s(z''''))))))) -> F(0, s(0), s(s(s(s(z'''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
F(0, s(0), s(s(s(s(s(s(z''''))))))) -> F(0, s(0), s(s(s(s(z'''')))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(0, s(0), s(s(s(s(s(s(z''''))))))) -> F(0, s(0), s(s(s(s(z'''')))))
POL(0) = 1 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Nar
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
F(0, s(s(y)), s(s(z))) -> F(0, y, f(0, s(s(y)), s(z)))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
two new Dependency Pairs are created:
F(0, s(s(y)), s(s(z))) -> F(0, y, f(0, s(s(y)), s(z)))
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Narrowing Transformation
→DP Problem 4
↳Nar
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
three new Dependency Pairs are created:
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(0)), s(s(0))) -> F(0, 0, s(s(0)))
F(0, s(s(s(0))), s(s(0))) -> F(0, s(0), s(s(0)))
F(0, s(s(s(s(y')))), s(s(0))) -> F(0, s(s(y')), f(0, y', s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
→DP Problem 4
↳Nar
F(0, s(s(s(s(y')))), s(s(0))) -> F(0, s(s(y')), f(0, y', s(0)))
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
three new Dependency Pairs are created:
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
F(0, s(s(0)), s(s(s(z''')))) -> F(0, 0, s(f(0, s(s(0)), s(z'''))))
F(0, s(s(y''')), s(s(s(0)))) -> F(0, y''', f(0, y''', f(0, y''', s(0))))
F(0, s(s(y''')), s(s(s(s(z'))))) -> F(0, y''', f(0, y''', f(0, y''', f(0, s(s(y''')), s(z')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
F(0, s(s(y''')), s(s(s(s(z'))))) -> F(0, y''', f(0, y''', f(0, y''', f(0, s(s(y''')), s(z')))))
F(0, s(s(y''')), s(s(s(0)))) -> F(0, y''', f(0, y''', f(0, y''', s(0))))
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
F(0, s(s(s(s(y')))), s(s(0))) -> F(0, s(s(y')), f(0, y', s(0)))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
four new Dependency Pairs are created:
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, s(s(y'')), s(s(z'')))
F(0, s(s(s(s(y''')))), s(s(s(0)))) -> F(0, s(s(s(s(y''')))), s(s(0)))
F(0, s(s(y')), s(s(s(s(0))))) -> F(0, s(s(y')), s(s(s(0))))
F(0, s(s(y')), s(s(s(s(s(z''')))))) -> F(0, s(s(y')), s(s(s(s(z''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
F(0, s(s(y')), s(s(s(s(s(z''')))))) -> F(0, s(s(y')), s(s(s(s(z''')))))
F(0, s(s(y')), s(s(s(s(0))))) -> F(0, s(s(y')), s(s(s(0))))
F(0, s(s(s(s(y''')))), s(s(s(0)))) -> F(0, s(s(s(s(y''')))), s(s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, s(s(y'')), s(s(z'')))
F(0, s(s(y''')), s(s(s(0)))) -> F(0, y''', f(0, y''', f(0, y''', s(0))))
F(0, s(s(s(s(y')))), s(s(0))) -> F(0, s(s(y')), f(0, y', s(0)))
F(0, s(s(y''')), s(s(s(s(z'))))) -> F(0, y''', f(0, y''', f(0, y''', f(0, s(s(y''')), s(z')))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
seven new Dependency Pairs are created:
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, s(s(y'')), s(s(z'')))
F(0, s(s(s(s(y'''')))), s(s(s(0)))) -> F(0, s(s(s(s(y'''')))), s(s(0)))
F(0, s(s(y''')), s(s(s(s(0))))) -> F(0, s(s(y''')), s(s(s(0))))
F(0, s(s(y''')), s(s(s(s(s(z'''')))))) -> F(0, s(s(y''')), s(s(s(s(z'''')))))
F(0, s(s(y'''')), s(s(s(s(z''''))))) -> F(0, s(s(y'''')), s(s(s(z''''))))
F(0, s(s(s(s(y''''')))), s(s(s(s(0))))) -> F(0, s(s(s(s(y''''')))), s(s(s(0))))
F(0, s(s(y'''')), s(s(s(s(s(0)))))) -> F(0, s(s(y'''')), s(s(s(s(0)))))
F(0, s(s(y'''')), s(s(s(s(s(s(z'''''))))))) -> F(0, s(s(y'''')), s(s(s(s(s(z'''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 15
↳Polynomial Ordering
→DP Problem 4
↳Nar
F(0, s(s(y'''')), s(s(s(s(s(s(z'''''))))))) -> F(0, s(s(y'''')), s(s(s(s(s(z'''''))))))
F(0, s(s(y'''')), s(s(s(s(s(0)))))) -> F(0, s(s(y'''')), s(s(s(s(0)))))
F(0, s(s(s(s(y''''')))), s(s(s(s(0))))) -> F(0, s(s(s(s(y''''')))), s(s(s(0))))
F(0, s(s(y'''')), s(s(s(s(z''''))))) -> F(0, s(s(y'''')), s(s(s(z''''))))
F(0, s(s(y''')), s(s(s(s(s(z'''')))))) -> F(0, s(s(y''')), s(s(s(s(z'''')))))
F(0, s(s(y''')), s(s(s(s(0))))) -> F(0, s(s(y''')), s(s(s(0))))
F(0, s(s(s(s(y'''')))), s(s(s(0)))) -> F(0, s(s(s(s(y'''')))), s(s(0)))
F(0, s(s(y')), s(s(s(s(0))))) -> F(0, s(s(y')), s(s(s(0))))
F(0, s(s(s(s(y''')))), s(s(s(0)))) -> F(0, s(s(s(s(y''')))), s(s(0)))
F(0, s(s(y''')), s(s(s(0)))) -> F(0, y''', f(0, y''', f(0, y''', s(0))))
F(0, s(s(s(s(y')))), s(s(0))) -> F(0, s(s(y')), f(0, y', s(0)))
F(0, s(s(y''')), s(s(s(s(z'))))) -> F(0, y''', f(0, y''', f(0, y''', f(0, s(s(y''')), s(z')))))
F(0, s(s(y')), s(s(s(s(s(z''')))))) -> F(0, s(s(y')), s(s(s(s(z''')))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(0, s(s(y''')), s(s(s(0)))) -> F(0, y''', f(0, y''', f(0, y''', s(0))))
F(0, s(s(s(s(y')))), s(s(0))) -> F(0, s(s(y')), f(0, y', s(0)))
F(0, s(s(y''')), s(s(s(s(z'))))) -> F(0, y''', f(0, y''', f(0, y''', f(0, s(s(y''')), s(z')))))
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(f(x1, x2, x3)) = 0 POL(F(x1, x2, x3)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 16
↳Dependency Graph
→DP Problem 4
↳Nar
F(0, s(s(y'''')), s(s(s(s(s(s(z'''''))))))) -> F(0, s(s(y'''')), s(s(s(s(s(z'''''))))))
F(0, s(s(y'''')), s(s(s(s(s(0)))))) -> F(0, s(s(y'''')), s(s(s(s(0)))))
F(0, s(s(s(s(y''''')))), s(s(s(s(0))))) -> F(0, s(s(s(s(y''''')))), s(s(s(0))))
F(0, s(s(y'''')), s(s(s(s(z''''))))) -> F(0, s(s(y'''')), s(s(s(z''''))))
F(0, s(s(y''')), s(s(s(s(s(z'''')))))) -> F(0, s(s(y''')), s(s(s(s(z'''')))))
F(0, s(s(y''')), s(s(s(s(0))))) -> F(0, s(s(y''')), s(s(s(0))))
F(0, s(s(s(s(y'''')))), s(s(s(0)))) -> F(0, s(s(s(s(y'''')))), s(s(0)))
F(0, s(s(y')), s(s(s(s(0))))) -> F(0, s(s(y')), s(s(s(0))))
F(0, s(s(s(s(y''')))), s(s(s(0)))) -> F(0, s(s(s(s(y''')))), s(s(0)))
F(0, s(s(y')), s(s(s(s(s(z''')))))) -> F(0, s(s(y')), s(s(s(s(z''')))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 17
↳Polynomial Ordering
→DP Problem 4
↳Nar
F(0, s(s(y'''')), s(s(s(s(s(0)))))) -> F(0, s(s(y'''')), s(s(s(s(0)))))
F(0, s(s(y'''')), s(s(s(s(z''''))))) -> F(0, s(s(y'''')), s(s(s(z''''))))
F(0, s(s(y''')), s(s(s(s(s(z'''')))))) -> F(0, s(s(y''')), s(s(s(s(z'''')))))
F(0, s(s(y')), s(s(s(s(s(z''')))))) -> F(0, s(s(y')), s(s(s(s(z''')))))
F(0, s(s(y'''')), s(s(s(s(s(s(z'''''))))))) -> F(0, s(s(y'''')), s(s(s(s(s(z'''''))))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(0, s(s(y'''')), s(s(s(s(s(0)))))) -> F(0, s(s(y'''')), s(s(s(s(0)))))
F(0, s(s(y'''')), s(s(s(s(z''''))))) -> F(0, s(s(y'''')), s(s(s(z''''))))
F(0, s(s(y''')), s(s(s(s(s(z'''')))))) -> F(0, s(s(y''')), s(s(s(s(z'''')))))
F(0, s(s(y')), s(s(s(s(s(z''')))))) -> F(0, s(s(y')), s(s(s(s(z''')))))
F(0, s(s(y'''')), s(s(s(s(s(s(z'''''))))))) -> F(0, s(s(y'''')), s(s(s(s(s(z'''''))))))
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 11
↳Nar
...
→DP Problem 18
↳Dependency Graph
→DP Problem 4
↳Nar
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Narrowing Transformation
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x), s(y), s(z)) -> F(x, y, f(s(x), s(y), z))
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), 0) -> F(x, y, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
three new Dependency Pairs are created:
F(s(x), s(y), s(z)) -> F(x, y, f(s(x), s(y), z))
F(s(0), s(y''), s(z'')) -> F(0, y'', f(0, s(s(y'')), s(z'')))
F(s(x''), s(y''), s(0)) -> F(x'', y'', f(x'', y'', s(0)))
F(s(x''), s(y''), s(s(z''))) -> F(x'', y'', f(x'', y'', f(s(x''), s(y''), z'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Narrowing Transformation
F(s(x''), s(y''), s(s(z''))) -> F(x'', y'', f(x'', y'', f(s(x''), s(y''), z'')))
F(s(x''), s(y''), s(0)) -> F(x'', y'', f(x'', y'', s(0)))
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), 0) -> F(x, y, s(0))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
six new Dependency Pairs are created:
F(s(x''), s(y''), s(0)) -> F(x'', y'', f(x'', y'', s(0)))
F(s(0), s(0), s(0)) -> F(0, 0, s(s(0)))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(0), s(s(0)), s(0)) -> F(0, s(0), s(s(0)))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(0), s(s(s(y'))), s(0)) -> F(0, s(s(y')), f(0, y', s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 20
↳Narrowing Transformation
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), 0) -> F(x, y, s(0))
F(s(x''), s(y''), s(s(z''))) -> F(x'', y'', f(x'', y'', f(s(x''), s(y''), z'')))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
five new Dependency Pairs are created:
F(s(x''), s(y''), s(s(z''))) -> F(x'', y'', f(x'', y'', f(s(x''), s(y''), z'')))
F(s(0), s(0), s(s(z'''))) -> F(0, 0, s(f(s(0), s(0), z''')))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(0), s(y'''), s(s(z'''))) -> F(0, y''', f(0, y''', f(0, s(s(y''')), s(z'''))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 21
↳Forward Instantiation Transformation
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), 0) -> F(x, y, s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
five new Dependency Pairs are created:
F(s(x), s(y), 0) -> F(x, y, s(0))
F(s(s(x'')), s(0), 0) -> F(s(x''), 0, s(0))
F(s(s(x'')), s(s(y'')), 0) -> F(s(x''), s(y''), s(0))
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 22
↳Forward Instantiation Transformation
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x'')), s(s(y'')), 0) -> F(s(x''), s(y''), s(0))
F(s(s(x'')), s(0), 0) -> F(s(x''), 0, s(0))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
seven new Dependency Pairs are created:
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(s(x'')), 0, s(s(z''))) -> F(s(x''), s(0), s(z''))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
F(s(s(s(x''''))), 0, s(0)) -> F(s(s(x'''')), s(0), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 23
↳Forward Instantiation Transformation
F(s(s(s(x''''))), 0, s(0)) -> F(s(s(x'''')), s(0), 0)
F(s(s(x'')), s(0), 0) -> F(s(x''), 0, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
one new Dependency Pair is created:
F(s(s(x'')), s(0), 0) -> F(s(x''), 0, s(0))
F(s(s(s(s(x'''''')))), s(0), 0) -> F(s(s(s(x''''''))), 0, s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 25
↳Forward Instantiation Transformation
F(s(s(s(s(x'''''')))), s(0), 0) -> F(s(s(s(x''''''))), 0, s(0))
F(s(s(s(x''''))), 0, s(0)) -> F(s(s(x'''')), s(0), 0)
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
one new Dependency Pair is created:
F(s(s(s(x''''))), 0, s(0)) -> F(s(s(x'''')), s(0), 0)
F(s(s(s(s(s(x''''''''))))), 0, s(0)) -> F(s(s(s(s(x'''''''')))), s(0), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 27
↳Polynomial Ordering
F(s(s(s(s(s(x''''''''))))), 0, s(0)) -> F(s(s(s(s(x'''''''')))), s(0), 0)
F(s(s(s(s(x'''''')))), s(0), 0) -> F(s(s(s(x''''''))), 0, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(s(s(s(s(s(x''''''''))))), 0, s(0)) -> F(s(s(s(s(x'''''''')))), s(0), 0)
F(s(s(s(s(x'''''')))), s(0), 0) -> F(s(s(s(x''''''))), 0, s(0))
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 32
↳Dependency Graph
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 24
↳Forward Instantiation Transformation
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x'')), s(s(y'')), 0) -> F(s(x''), s(y''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x'')), 0, s(s(z''))) -> F(s(x''), s(0), s(z''))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
11 new Dependency Pairs are created:
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x''), s(y''), s(s(z''))) -> F(s(x''), s(y''), s(z''))
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(x'''')), s(s(y'''')), s(0)) -> F(s(s(x'''')), s(s(y'''')), 0)
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 26
↳Forward Instantiation Transformation
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x'''')), s(s(y'''')), s(0)) -> F(s(s(x'''')), s(s(y'''')), 0)
F(s(s(x'')), s(s(y'')), 0) -> F(s(x''), s(y''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(x''), s(y''), s(s(z''))) -> F(s(x''), s(y''), s(z''))
F(s(s(x'')), 0, s(s(z''))) -> F(s(x''), s(0), s(z''))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
seven new Dependency Pairs are created:
F(s(s(x'')), s(s(y'')), 0) -> F(s(x''), s(y''), s(0))
F(s(s(s(0))), s(s(y''')), 0) -> F(s(s(0)), s(y'''), s(0))
F(s(s(s(x''''))), s(s(0)), 0) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(x''''))), s(s(s(y''''))), 0) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(s(x''''''))), s(s(s(y''''''))), 0) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(s(0)))), s(s(s(y'''''''''))), 0) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(s(x''''''')))), s(s(s(0))), 0) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(s(x''''''')))), s(s(s(s(y''''''')))), 0) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 28
↳Forward Instantiation Transformation
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
F(s(s(s(s(x''''''')))), s(s(s(s(y''''''')))), 0) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(s(x''''''')))), s(s(s(0))), 0) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(s(0)))), s(s(s(y'''''''''))), 0) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(x''''''))), s(s(s(y''''''))), 0) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(x''''))), s(s(s(y''''))), 0) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(s(x''''))), s(s(0)), 0) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), s(s(y''')), 0) -> F(s(s(0)), s(y'''), s(0))
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(x'''')), s(s(y'''')), s(0)) -> F(s(s(x'''')), s(s(y'''')), 0)
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(x''), s(y''), s(s(z''))) -> F(s(x''), s(y''), s(z''))
F(s(s(x'')), 0, s(s(z''))) -> F(s(x''), s(0), s(z''))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
11 new Dependency Pairs are created:
F(s(s(x'')), 0, s(s(z''))) -> F(s(x''), s(0), s(z''))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(s(x''''))), 0, s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(x''')), 0, s(s(s(0)))) -> F(s(x'''), s(0), s(s(0)))
F(s(s(x''')), 0, s(s(s(s(z''''))))) -> F(s(x'''), s(0), s(s(s(z''''))))
F(s(s(x'''')), 0, s(s(s(z'''')))) -> F(s(x''''), s(0), s(s(z'''')))
F(s(s(s(0))), 0, s(s(s(0)))) -> F(s(s(0)), s(0), s(s(0)))
F(s(s(s(x'''''))), 0, s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(s(z'''''''))))) -> F(s(s(0)), s(0), s(s(s(z'''''''))))
F(s(s(x'''')), 0, s(s(s(s(0))))) -> F(s(x''''), s(0), s(s(s(0))))
F(s(s(x'''')), 0, s(s(s(s(s(z''''')))))) -> F(s(x''''), s(0), s(s(s(s(z''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 29
↳Forward Instantiation Transformation
F(s(s(x'''')), 0, s(s(s(s(s(z''''')))))) -> F(s(x''''), s(0), s(s(s(s(z''''')))))
F(s(s(x'''')), 0, s(s(s(s(0))))) -> F(s(x''''), s(0), s(s(s(0))))
F(s(s(s(0))), 0, s(s(s(s(z'''''''))))) -> F(s(s(0)), s(0), s(s(s(z'''''''))))
F(s(s(s(x'''''))), 0, s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(0)))) -> F(s(s(0)), s(0), s(s(0)))
F(s(s(x'''')), 0, s(s(s(z'''')))) -> F(s(x''''), s(0), s(s(z'''')))
F(s(s(x''')), 0, s(s(s(s(z''''))))) -> F(s(x'''), s(0), s(s(s(z''''))))
F(s(s(x''')), 0, s(s(s(0)))) -> F(s(x'''), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x''''))), 0, s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
F(s(s(s(s(x''''''')))), s(s(s(s(y''''''')))), 0) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(s(x''''''')))), s(s(s(0))), 0) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(s(0)))), s(s(s(y'''''''''))), 0) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(x''''''))), s(s(s(y''''''))), 0) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(x''''))), s(s(s(y''''))), 0) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(s(x''''))), s(s(0)), 0) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), s(s(y''')), 0) -> F(s(s(0)), s(y'''), s(0))
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(x'''')), s(s(y'''')), s(0)) -> F(s(s(x'''')), s(s(y'''')), 0)
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(x''), s(y''), s(s(z''))) -> F(s(x''), s(y''), s(z''))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
17 new Dependency Pairs are created:
F(s(x''), s(y''), s(s(z''))) -> F(s(x''), s(y''), s(z''))
F(s(s(0)), s(y'''), s(s(0))) -> F(s(s(0)), s(y'''), s(0))
F(s(s(x'''')), s(0), s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(x'''')), s(s(y'''')), s(s(0))) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x'''), s(y'''), s(s(s(0)))) -> F(s(x'''), s(y'''), s(s(0)))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(s(0)), s(y''''), s(s(s(0)))) -> F(s(s(0)), s(y''''), s(s(0)))
F(s(s(x''''')), s(0), s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(x''''')), s(s(y''''')), s(s(s(0)))) -> F(s(s(x''''')), s(s(y''''')), s(s(0)))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
F(s(s(x'''''')), s(s(y'''''')), s(s(0))) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(0))), s(s(y''''''''')), s(s(0))) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(x'''''''))), s(s(0)), s(s(0))) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(s(0))) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 30
↳Forward Instantiation Transformation
F(s(s(x'''')), 0, s(s(s(s(0))))) -> F(s(x''''), s(0), s(s(s(0))))
F(s(s(s(0))), 0, s(s(s(s(z'''''''))))) -> F(s(s(0)), s(0), s(s(s(z'''''''))))
F(s(s(s(x'''''))), 0, s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(0)))) -> F(s(s(0)), s(0), s(s(0)))
F(s(s(x'''')), 0, s(s(s(z'''')))) -> F(s(x''''), s(0), s(s(z'''')))
F(s(s(x''')), 0, s(s(s(s(z''''))))) -> F(s(x'''), s(0), s(s(s(z''''))))
F(s(s(x''')), 0, s(s(s(0)))) -> F(s(x'''), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x''''))), 0, s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(s(x''''')), s(s(y''''')), s(s(s(0)))) -> F(s(s(x''''')), s(s(y''''')), s(s(0)))
F(s(s(x''''')), s(0), s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(0)), s(y''''), s(s(s(0)))) -> F(s(s(0)), s(y''''), s(s(0)))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(x'''), s(y'''), s(s(s(0)))) -> F(s(x'''), s(y'''), s(s(0)))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(s(0))) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(x'''''''))), s(s(0)), s(s(0))) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(0))), s(s(y''''''''')), s(s(0))) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(x'''''')), s(s(y'''''')), s(s(0))) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(x'''')), s(s(y'''')), s(s(0))) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(x'''')), s(0), s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(0)), s(y'''), s(s(0))) -> F(s(s(0)), s(y'''), s(0))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(s(x''''''')))), s(s(s(s(y''''''')))), 0) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(s(x''''''')))), s(s(s(0))), 0) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(s(0)))), s(s(s(y'''''''''))), 0) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(x''''''))), s(s(s(y''''''))), 0) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(x''''))), s(s(s(y''''))), 0) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(s(x''''))), s(s(0)), 0) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), s(s(y''')), 0) -> F(s(s(0)), s(y'''), s(0))
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(x'''')), s(s(y'''')), s(0)) -> F(s(s(x'''')), s(s(y'''')), 0)
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x'''')), 0, s(s(s(s(s(z''''')))))) -> F(s(x''''), s(0), s(s(s(s(z''''')))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
eight new Dependency Pairs are created:
F(s(s(x'''')), s(s(y'''')), s(0)) -> F(s(s(x'''')), s(s(y'''')), 0)
F(s(s(s(0))), s(s(y''''')), s(0)) -> F(s(s(s(0))), s(s(y''''')), 0)
F(s(s(s(x''''''))), s(s(0)), s(0)) -> F(s(s(s(x''''''))), s(s(0)), 0)
F(s(s(s(x''''''))), s(s(s(y''''''))), s(0)) -> F(s(s(s(x''''''))), s(s(s(y''''''))), 0)
F(s(s(s(0))), s(s(y'''''')), s(0)) -> F(s(s(s(0))), s(s(y'''''')), 0)
F(s(s(s(x''''''''))), s(s(s(y''''''''))), s(0)) -> F(s(s(s(x''''''''))), s(s(s(y''''''''))), 0)
F(s(s(s(s(0)))), s(s(s(y'''''''''''))), s(0)) -> F(s(s(s(s(0)))), s(s(s(y'''''''''''))), 0)
F(s(s(s(s(x''''''''')))), s(s(s(0))), s(0)) -> F(s(s(s(s(x''''''''')))), s(s(s(0))), 0)
F(s(s(s(s(x''''''''')))), s(s(s(s(y''''''''')))), s(0)) -> F(s(s(s(s(x''''''''')))), s(s(s(s(y''''''''')))), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 31
↳Polynomial Ordering
F(s(s(x'''')), 0, s(s(s(s(s(z''''')))))) -> F(s(x''''), s(0), s(s(s(s(z''''')))))
F(s(s(s(0))), 0, s(s(s(s(z'''''''))))) -> F(s(s(0)), s(0), s(s(s(z'''''''))))
F(s(s(s(x'''''))), 0, s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(0)))) -> F(s(s(0)), s(0), s(s(0)))
F(s(s(x'''')), 0, s(s(s(z'''')))) -> F(s(x''''), s(0), s(s(z'''')))
F(s(s(x''')), 0, s(s(s(s(z''''))))) -> F(s(x'''), s(0), s(s(s(z''''))))
F(s(s(x''')), 0, s(s(s(0)))) -> F(s(x'''), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x''''))), 0, s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(s(x''''')), s(s(y''''')), s(s(s(0)))) -> F(s(s(x''''')), s(s(y''''')), s(s(0)))
F(s(s(x''''')), s(0), s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(0)), s(y''''), s(s(s(0)))) -> F(s(s(0)), s(y''''), s(s(0)))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(x'''), s(y'''), s(s(s(0)))) -> F(s(x'''), s(y'''), s(s(0)))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(s(0))) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(x'''''''))), s(s(0)), s(s(0))) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(0))), s(s(y''''''''')), s(s(0))) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(x'''''')), s(s(y'''''')), s(s(0))) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(x'''')), s(s(y'''')), s(s(0))) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(x'''')), s(0), s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(0)), s(y'''), s(s(0))) -> F(s(s(0)), s(y'''), s(0))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(s(x''''''''')))), s(s(s(s(y''''''''')))), s(0)) -> F(s(s(s(s(x''''''''')))), s(s(s(s(y''''''''')))), 0)
F(s(s(s(s(x''''''''')))), s(s(s(0))), s(0)) -> F(s(s(s(s(x''''''''')))), s(s(s(0))), 0)
F(s(s(s(s(0)))), s(s(s(y'''''''''''))), s(0)) -> F(s(s(s(s(0)))), s(s(s(y'''''''''''))), 0)
F(s(s(s(s(x''''''')))), s(s(s(s(y''''''')))), 0) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(s(x''''''')))), s(s(s(0))), 0) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(x''''''''))), s(s(s(y''''''''))), s(0)) -> F(s(s(s(x''''''''))), s(s(s(y''''''''))), 0)
F(s(s(s(0))), s(s(y'''''')), s(0)) -> F(s(s(s(0))), s(s(y'''''')), 0)
F(s(s(s(s(0)))), s(s(s(y'''''''''))), 0) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(x''''''))), s(s(s(y''''''))), s(0)) -> F(s(s(s(x''''''))), s(s(s(y''''''))), 0)
F(s(s(s(x''''''))), s(s(0)), s(0)) -> F(s(s(s(x''''''))), s(s(0)), 0)
F(s(s(s(0))), s(s(y''''')), s(0)) -> F(s(s(s(0))), s(s(y''''')), 0)
F(s(s(s(x''''''))), s(s(s(y''''''))), 0) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(x''''))), s(s(s(y''''))), 0) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(s(x''''))), s(s(0)), 0) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), s(s(y''')), 0) -> F(s(s(0)), s(y'''), s(0))
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x'''')), 0, s(s(s(s(0))))) -> F(s(x''''), s(0), s(s(s(0))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(s(s(x'''')), 0, s(s(s(s(s(z''''')))))) -> F(s(x''''), s(0), s(s(s(s(z''''')))))
F(s(s(s(0))), 0, s(s(s(s(z'''''''))))) -> F(s(s(0)), s(0), s(s(s(z'''''''))))
F(s(s(s(x'''''))), 0, s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(0)))) -> F(s(s(0)), s(0), s(s(0)))
F(s(s(x'''')), 0, s(s(s(z'''')))) -> F(s(x''''), s(0), s(s(z'''')))
F(s(s(x''')), 0, s(s(s(s(z''''))))) -> F(s(x'''), s(0), s(s(s(z''''))))
F(s(s(x''')), 0, s(s(s(0)))) -> F(s(x'''), s(0), s(s(0)))
F(s(s(s(0))), 0, s(s(s(z''''')))) -> F(s(s(0)), s(0), s(s(z''''')))
F(s(s(s(x''''))), 0, s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), 0, s(s(0))) -> F(s(s(0)), s(0), s(0))
F(s(s(x''''')), 0, s(s(s(s(z'''))))) -> F(s(x'''''), s(0), s(s(s(z'''))))
F(s(s(x''''')), 0, s(s(s(0)))) -> F(s(x'''''), s(0), s(s(0)))
F(s(s(s(s(x''''''')))), s(s(s(s(y''''''')))), 0) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(s(x''''''')))), s(s(s(0))), 0) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(s(0)))), s(s(s(y'''''''''))), 0) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(s(x''''''))), s(s(s(y''''''))), 0) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(s(x''''))), s(s(s(y''''))), 0) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(s(x''''))), s(s(0)), 0) -> F(s(s(x'''')), s(0), s(0))
F(s(s(s(0))), s(s(y''')), 0) -> F(s(s(0)), s(y'''), s(0))
F(s(s(s(x'''))), s(s(s(y'''))), 0) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(s(x'''))), s(s(0)), 0) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(0))), s(s(y''''')), 0) -> F(s(s(0)), s(y'''''), s(0))
F(s(s(x')), s(s(y')), s(0)) -> F(s(x'), s(y'), f(x', y', f(s(x'), s(y'), 0)))
F(s(s(s(x'''))), 0, s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(x')), s(0), s(0)) -> F(s(x'), 0, f(x', s(0), 0))
F(s(x'''), s(y'''), s(s(s(z')))) -> F(x''', y''', f(x''', y''', f(x''', y''', f(s(x'''), s(y'''), z'))))
F(s(s(0)), s(y'''), s(0)) -> F(s(0), y''', f(0, s(y'''), s(s(0))))
F(s(x'''), s(y'''), s(s(0))) -> F(x''', y''', f(x''', y''', f(x''', y''', s(0))))
F(s(s(0)), s(y'''), s(s(z'''))) -> F(s(0), y''', f(0, s(y'''), s(f(s(s(0)), s(y'''), z'''))))
F(s(s(x'''')), 0, s(s(s(s(0))))) -> F(s(x''''), s(0), s(s(s(0))))
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(f(x1, x2, x3)) = 0 POL(F(x1, x2, x3)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 33
↳Dependency Graph
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(s(x''''')), s(s(y''''')), s(s(s(0)))) -> F(s(s(x''''')), s(s(y''''')), s(s(0)))
F(s(s(x''''')), s(0), s(s(s(0)))) -> F(s(s(x''''')), s(0), s(s(0)))
F(s(s(0)), s(y''''), s(s(s(0)))) -> F(s(s(0)), s(y''''), s(s(0)))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(x'''), s(y'''), s(s(s(0)))) -> F(s(x'''), s(y'''), s(s(0)))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(s(0))) -> F(s(s(s(x'''''''))), s(s(s(y'''''''))), s(0))
F(s(s(s(x'''''''))), s(s(0)), s(s(0))) -> F(s(s(s(x'''''''))), s(s(0)), s(0))
F(s(s(s(0))), s(s(y''''''''')), s(s(0))) -> F(s(s(s(0))), s(s(y''''''''')), s(0))
F(s(s(x'''''')), s(s(y'''''')), s(s(0))) -> F(s(s(x'''''')), s(s(y'''''')), s(0))
F(s(s(x'''')), s(s(y'''')), s(s(0))) -> F(s(s(x'''')), s(s(y'''')), s(0))
F(s(s(x'''')), s(0), s(s(0))) -> F(s(s(x'''')), s(0), s(0))
F(s(s(0)), s(y'''), s(s(0))) -> F(s(s(0)), s(y'''), s(0))
F(s(x'), s(y'), s(s(s(0)))) -> F(s(x'), s(y'), s(s(0)))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(x''')), s(s(y''')), s(s(0))) -> F(s(s(x''')), s(s(y''')), s(0))
F(s(s(x''')), s(0), s(s(0))) -> F(s(s(x''')), s(0), s(0))
F(s(s(s(s(x''''''''')))), s(s(s(s(y''''''''')))), s(0)) -> F(s(s(s(s(x''''''''')))), s(s(s(s(y''''''''')))), 0)
F(s(s(s(s(x''''''''')))), s(s(s(0))), s(0)) -> F(s(s(s(s(x''''''''')))), s(s(s(0))), 0)
F(s(s(s(s(0)))), s(s(s(y'''''''''''))), s(0)) -> F(s(s(s(s(0)))), s(s(s(y'''''''''''))), 0)
F(s(s(s(x''''''''))), s(s(s(y''''''''))), s(0)) -> F(s(s(s(x''''''''))), s(s(s(y''''''''))), 0)
F(s(s(s(0))), s(s(y'''''')), s(0)) -> F(s(s(s(0))), s(s(y'''''')), 0)
F(s(s(s(x''''''))), s(s(s(y''''''))), s(0)) -> F(s(s(s(x''''''))), s(s(s(y''''''))), 0)
F(s(s(s(x''''''))), s(s(0)), s(0)) -> F(s(s(s(x''''''))), s(s(0)), 0)
F(s(s(s(0))), s(s(y''''')), s(0)) -> F(s(s(s(0))), s(s(y''''')), 0)
F(s(s(s(x'''''))), s(s(s(y'''''))), s(0)) -> F(s(s(s(x'''''))), s(s(s(y'''''))), 0)
F(s(s(s(x'''''))), s(s(0)), s(0)) -> F(s(s(s(x'''''))), s(s(0)), 0)
F(s(s(s(0))), s(s(y''''''')), s(0)) -> F(s(s(s(0))), s(s(y''''''')), 0)
F(s(s(0)), s(y'), s(s(0))) -> F(s(s(0)), s(y'), s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 34
↳Forward Instantiation Transformation
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
seven new Dependency Pairs are created:
F(s(s(0)), s(y'), s(s(s(z''''')))) -> F(s(s(0)), s(y'), s(s(z''''')))
F(s(s(0)), s(y'''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y'''), s(s(s(z'''''''))))
F(s(s(0)), s(y'''), s(s(s(s(s(z'''''')))))) -> F(s(s(0)), s(y'''), s(s(s(s(z'''''')))))
F(s(s(0)), s(y''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''), s(s(s(z'''''''))))
F(s(s(0)), s(y''), s(s(s(s(s(z''''''')))))) -> F(s(s(0)), s(y''), s(s(s(s(z''''''')))))
F(s(s(0)), s(y''), s(s(s(s(s(z''''''''')))))) -> F(s(s(0)), s(y''), s(s(s(s(z''''''''')))))
F(s(s(0)), s(y''), s(s(s(s(s(0)))))) -> F(s(s(0)), s(y''), s(s(s(s(0)))))
F(s(s(0)), s(y''), s(s(s(s(s(s(z'''''''))))))) -> F(s(s(0)), s(y''), s(s(s(s(s(z'''''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 35
↳Polynomial Ordering
F(s(s(0)), s(y''), s(s(s(s(s(s(z'''''''))))))) -> F(s(s(0)), s(y''), s(s(s(s(s(z'''''''))))))
F(s(s(0)), s(y''), s(s(s(s(s(0)))))) -> F(s(s(0)), s(y''), s(s(s(s(0)))))
F(s(s(0)), s(y''), s(s(s(s(s(z''''''''')))))) -> F(s(s(0)), s(y''), s(s(s(s(z''''''''')))))
F(s(s(0)), s(y''), s(s(s(s(s(z''''''')))))) -> F(s(s(0)), s(y''), s(s(s(s(z''''''')))))
F(s(s(0)), s(y''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''), s(s(s(z'''''''))))
F(s(s(0)), s(y'''), s(s(s(s(s(z'''''')))))) -> F(s(s(0)), s(y'''), s(s(s(s(z'''''')))))
F(s(s(0)), s(y'''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y'''), s(s(s(z'''''''))))
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(s(s(0)), s(y''), s(s(s(s(s(s(z'''''''))))))) -> F(s(s(0)), s(y''), s(s(s(s(s(z'''''''))))))
F(s(s(0)), s(y''), s(s(s(s(s(0)))))) -> F(s(s(0)), s(y''), s(s(s(s(0)))))
F(s(s(0)), s(y''), s(s(s(s(s(z''''''''')))))) -> F(s(s(0)), s(y''), s(s(s(s(z''''''''')))))
F(s(s(0)), s(y''), s(s(s(s(s(z''''''')))))) -> F(s(s(0)), s(y''), s(s(s(s(z''''''')))))
F(s(s(0)), s(y''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''), s(s(s(z'''''''))))
F(s(s(0)), s(y'''), s(s(s(s(s(z'''''')))))) -> F(s(s(0)), s(y'''), s(s(s(s(z'''''')))))
F(s(s(0)), s(y'''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y'''), s(s(s(z'''''''))))
F(s(x''''), s(y''''), s(s(s(s(s(z''''')))))) -> F(s(x''''), s(y''''), s(s(s(s(z''''')))))
F(s(s(0)), s(y''''), s(s(s(s(z'''''''))))) -> F(s(s(0)), s(y''''), s(s(s(z'''''''))))
F(s(x''''), s(y''''), s(s(s(z'''')))) -> F(s(x''''), s(y''''), s(s(z'''')))
F(s(x'''), s(y'''), s(s(s(s(z''''))))) -> F(s(x'''), s(y'''), s(s(s(z''''))))
F(s(x'), s(y'), s(s(s(s(z'''))))) -> F(s(x'), s(y'), s(s(s(z'''))))
F(s(s(0)), s(y'''), s(s(s(z''''')))) -> F(s(s(0)), s(y'''), s(s(z''''')))
F(s(x''''), s(y''''), s(s(s(s(0))))) -> F(s(x''''), s(y''''), s(s(s(0))))
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 4
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 36
↳Dependency Graph
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost