R
↳Dependency Pair Analysis
F(s(0), y, z) -> F(0, s(y), s(z))
F(s(x), s(y), 0) -> F(x, y, s(0))
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), s(z)) -> F(x, y, f(s(x), s(y), z))
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(0, s(s(y)), s(0)) -> F(0, y, s(0))
F(0, s(0), s(s(z))) -> F(0, s(0), z)
F(0, s(s(y)), s(s(z))) -> F(0, y, f(0, s(s(y)), s(z)))
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
F(0, s(s(y)), s(0)) -> F(0, y, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(0, s(s(y)), s(0)) -> F(0, y, s(0))
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
F(0, s(0), s(s(z))) -> F(0, s(0), z)
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(0, s(0), s(s(z))) -> F(0, s(0), z)
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Narrowing Transformation
→DP Problem 4
↳Remaining
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
F(0, s(s(y)), s(s(z))) -> F(0, y, f(0, s(s(y)), s(z)))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
two new Dependency Pairs are created:
F(0, s(s(y)), s(s(z))) -> F(0, y, f(0, s(s(y)), s(z)))
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 4
↳Remaining
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
three new Dependency Pairs are created:
F(0, s(s(y)), s(s(z))) -> F(0, s(s(y)), s(z))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, s(s(y'')), s(s(z'')))
F(0, s(s(y')), s(s(s(0)))) -> F(0, s(s(y')), s(s(0)))
F(0, s(s(y')), s(s(s(s(z''''))))) -> F(0, s(s(y')), s(s(s(z''''))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
F(0, s(s(y')), s(s(s(s(z''''))))) -> F(0, s(s(y')), s(s(s(z''''))))
F(0, s(s(y')), s(s(s(0)))) -> F(0, s(s(y')), s(s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, s(s(y'')), s(s(z'')))
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x), s(y), s(z)) -> F(x, y, f(s(x), s(y), z))
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), 0) -> F(x, y, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
F(0, s(s(y')), s(s(s(s(z''''))))) -> F(0, s(s(y')), s(s(s(z''''))))
F(0, s(s(y')), s(s(s(0)))) -> F(0, s(s(y')), s(s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, s(s(y'')), s(s(z'')))
F(0, s(s(y'')), s(s(0))) -> F(0, y'', f(0, y'', s(0)))
F(0, s(s(y'')), s(s(s(z'')))) -> F(0, y'', f(0, y'', f(0, s(s(y'')), s(z''))))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost
F(s(x), s(y), s(z)) -> F(s(x), s(y), z)
F(s(x), s(y), s(z)) -> F(x, y, f(s(x), s(y), z))
F(s(x), 0, s(z)) -> F(x, s(0), z)
F(s(x), s(y), 0) -> F(x, y, s(0))
f(x, 0, 0) -> s(x)
f(0, y, 0) -> s(y)
f(0, 0, z) -> s(z)
f(s(0), y, z) -> f(0, s(y), s(z))
f(s(x), s(y), 0) -> f(x, y, s(0))
f(s(x), 0, s(z)) -> f(x, s(0), z)
f(0, s(0), s(0)) -> s(s(0))
f(s(x), s(y), s(z)) -> f(x, y, f(s(x), s(y), z))
f(0, s(s(y)), s(0)) -> f(0, y, s(0))
f(0, s(0), s(s(z))) -> f(0, s(0), z)
f(0, s(s(y)), s(s(z))) -> f(0, y, f(0, s(s(y)), s(z)))
innermost