R
↳Dependency Pair Analysis
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x), s(y)) -> ACK(x, ack(s(x), y))
ACK(s(x), s(y)) -> ACK(s(x), y)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x), s(y)) -> ACK(x, ack(s(x), y))
ACK(s(x), 0) -> ACK(x, s(0))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
two new Dependency Pairs are created:
ACK(s(x), s(y)) -> ACK(x, ack(s(x), y))
ACK(s(x''), s(0)) -> ACK(x'', ack(x'', s(0)))
ACK(s(x''), s(s(y''))) -> ACK(x'', ack(x'', ack(s(x''), y'')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
ACK(s(x''), s(s(y''))) -> ACK(x'', ack(x'', ack(s(x''), y'')))
ACK(s(x''), s(0)) -> ACK(x'', ack(x'', s(0)))
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x), s(y)) -> ACK(s(x), y)
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
two new Dependency Pairs are created:
ACK(s(x''), s(0)) -> ACK(x'', ack(x'', s(0)))
ACK(s(0), s(0)) -> ACK(0, s(s(0)))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(s(x'), 0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Rewriting Transformation
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(s(x'), 0)))
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x''), s(s(y''))) -> ACK(x'', ack(x'', ack(s(x''), y'')))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
one new Dependency Pair is created:
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(s(x'), 0)))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
ACK(s(x''), s(s(y''))) -> ACK(x'', ack(x'', ack(s(x''), y'')))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(x), s(y)) -> ACK(s(x), y)
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
three new Dependency Pairs are created:
ACK(s(x''), s(s(y''))) -> ACK(x'', ack(x'', ack(s(x''), y'')))
ACK(s(0), s(s(y'''))) -> ACK(0, s(ack(s(0), y''')))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Forward Instantiation Transformation
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
two new Dependency Pairs are created:
ACK(s(x), 0) -> ACK(x, s(0))
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Forward Instantiation Transformation
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
six new Dependency Pairs are created:
ACK(s(x), s(y)) -> ACK(s(x), y)
ACK(s(x''), s(s(y''))) -> ACK(s(x''), s(y''))
ACK(s(s(x''')), s(s(0))) -> ACK(s(s(x''')), s(0))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(s(x'''''))), s(0)) -> ACK(s(s(s(x'''''))), 0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Forward Instantiation Transformation
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(s(x''')), s(s(0))) -> ACK(s(s(x''')), s(0))
ACK(s(x''), s(s(y''))) -> ACK(s(x''), s(y''))
ACK(s(s(s(x'''''))), s(0)) -> ACK(s(s(s(x'''''))), 0)
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
three new Dependency Pairs are created:
ACK(s(s(x'')), 0) -> ACK(s(x''), s(0))
ACK(s(s(s(x''''))), 0) -> ACK(s(s(x'''')), s(0))
ACK(s(s(s(x''''''))), 0) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(s(s(x''''''')))), 0) -> ACK(s(s(s(x'''''''))), s(0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Forward Instantiation Transformation
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(s(x''')), s(s(0))) -> ACK(s(s(x''')), s(0))
ACK(s(x''), s(s(y''))) -> ACK(s(x''), s(y''))
ACK(s(s(s(s(x''''''')))), 0) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(s(x''''''))), 0) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(s(x'''''))), s(0)) -> ACK(s(s(s(x'''''))), 0)
ACK(s(s(s(x''''))), 0) -> ACK(s(s(x'''')), s(0))
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
nine new Dependency Pairs are created:
ACK(s(x''), s(s(y''))) -> ACK(s(x''), s(y''))
ACK(s(s(x'''')), s(s(0))) -> ACK(s(s(x'''')), s(0))
ACK(s(x'''), s(s(s(0)))) -> ACK(s(x'''), s(s(0)))
ACK(s(x'''), s(s(s(s(y''''))))) -> ACK(s(x'''), s(s(s(y''''))))
ACK(s(x''''), s(s(s(y'''')))) -> ACK(s(x''''), s(s(y'''')))
ACK(s(s(x''''')), s(s(s(0)))) -> ACK(s(s(x''''')), s(s(0)))
ACK(s(x''''), s(s(s(s(0))))) -> ACK(s(x''''), s(s(s(0))))
ACK(s(x''''), s(s(s(s(s(y''''')))))) -> ACK(s(x''''), s(s(s(s(y''''')))))
ACK(s(s(x'''''')), s(s(0))) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(s(x'''''''))), s(s(0))) -> ACK(s(s(s(x'''''''))), s(0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
ACK(s(x''''), s(s(s(s(s(y''''')))))) -> ACK(s(x''''), s(s(s(s(y''''')))))
ACK(s(x''''), s(s(s(s(0))))) -> ACK(s(x''''), s(s(s(0))))
ACK(s(s(x''''')), s(s(s(0)))) -> ACK(s(s(x''''')), s(s(0)))
ACK(s(x''''), s(s(s(y'''')))) -> ACK(s(x''''), s(s(y'''')))
ACK(s(x'''), s(s(s(s(y''''))))) -> ACK(s(x'''), s(s(s(y''''))))
ACK(s(s(s(x'''''''))), s(s(0))) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(x'''''')), s(s(0))) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(x'''')), s(s(0))) -> ACK(s(s(x'''')), s(0))
ACK(s(x'''), s(s(s(0)))) -> ACK(s(x'''), s(s(0)))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(s(x''')), s(s(0))) -> ACK(s(s(x''')), s(0))
ACK(s(s(s(s(x''''''')))), 0) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(s(x''''''))), 0) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(s(x'''''))), s(0)) -> ACK(s(s(s(x'''''))), 0)
ACK(s(s(s(x''''))), 0) -> ACK(s(s(x'''')), s(0))
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
three new Dependency Pairs are created:
ACK(s(s(x'''')), s(0)) -> ACK(s(s(x'''')), 0)
ACK(s(s(s(x''''''))), s(0)) -> ACK(s(s(s(x''''''))), 0)
ACK(s(s(s(x''''''''))), s(0)) -> ACK(s(s(s(x''''''''))), 0)
ACK(s(s(s(s(x''''''''')))), s(0)) -> ACK(s(s(s(s(x''''''''')))), 0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 10
↳Argument Filtering and Ordering
ACK(s(x''''), s(s(s(s(0))))) -> ACK(s(x''''), s(s(s(0))))
ACK(s(s(x''''')), s(s(s(0)))) -> ACK(s(s(x''''')), s(s(0)))
ACK(s(x''''), s(s(s(y'''')))) -> ACK(s(x''''), s(s(y'''')))
ACK(s(x'''), s(s(s(s(y''''))))) -> ACK(s(x'''), s(s(s(y''''))))
ACK(s(x'''), s(s(s(0)))) -> ACK(s(x'''), s(s(0)))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(s(s(x'''''''))), s(s(0))) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(x'''''')), s(s(0))) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(x'''')), s(s(0))) -> ACK(s(s(x'''')), s(0))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(s(x''')), s(s(0))) -> ACK(s(s(x''')), s(0))
ACK(s(s(s(s(x''''''''')))), s(0)) -> ACK(s(s(s(s(x''''''''')))), 0)
ACK(s(s(s(s(x''''''')))), 0) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(s(x''''''''))), s(0)) -> ACK(s(s(s(x''''''''))), 0)
ACK(s(s(s(x''''''))), 0) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(s(x''''''))), s(0)) -> ACK(s(s(s(x''''''))), 0)
ACK(s(s(s(x''''))), 0) -> ACK(s(s(x'''')), s(0))
ACK(s(s(s(x'''''))), s(0)) -> ACK(s(s(s(x'''''))), 0)
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
ACK(s(x''''), s(s(s(s(s(y''''')))))) -> ACK(s(x''''), s(s(s(s(y''''')))))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
ACK(s(s(s(s(x''''''')))), 0) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(s(x''''''))), 0) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(s(x''''))), 0) -> ACK(s(s(x'''')), s(0))
ACK(s(s(s(x'''))), 0) -> ACK(s(s(x''')), s(0))
ACK(s(x'''), s(s(0))) -> ACK(x''', ack(x''', ack(x''', s(0))))
ACK(s(s(x')), s(0)) -> ACK(s(x'), ack(x', ack(x', s(0))))
ACK(s(x'''), s(s(s(y')))) -> ACK(x''', ack(x''', ack(x''', ack(s(x'''), y'))))
POL(s(x1)) = 1 + x1
ACK(x1, x2) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 11
↳Dependency Graph
ACK(s(x''''), s(s(s(s(0))))) -> ACK(s(x''''), s(s(s(0))))
ACK(s(s(x''''')), s(s(s(0)))) -> ACK(s(s(x''''')), s(s(0)))
ACK(s(x''''), s(s(s(y'''')))) -> ACK(s(x''''), s(s(y'''')))
ACK(s(x'''), s(s(s(s(y''''))))) -> ACK(s(x'''), s(s(s(y''''))))
ACK(s(x'''), s(s(s(0)))) -> ACK(s(x'''), s(s(0)))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(s(s(x'''''''))), s(s(0))) -> ACK(s(s(s(x'''''''))), s(0))
ACK(s(s(x'''''')), s(s(0))) -> ACK(s(s(x'''''')), s(0))
ACK(s(s(x'''')), s(s(0))) -> ACK(s(s(x'''')), s(0))
ACK(s(x'), s(s(s(0)))) -> ACK(s(x'), s(s(0)))
ACK(s(s(x''')), s(s(0))) -> ACK(s(s(x''')), s(0))
ACK(s(s(s(s(x''''''''')))), s(0)) -> ACK(s(s(s(s(x''''''''')))), 0)
ACK(s(s(s(x''''''''))), s(0)) -> ACK(s(s(s(x''''''''))), 0)
ACK(s(s(s(x''''''))), s(0)) -> ACK(s(s(s(x''''''))), 0)
ACK(s(s(s(x'''''))), s(0)) -> ACK(s(s(s(x'''''))), 0)
ACK(s(x''''), s(s(s(s(s(y''''')))))) -> ACK(s(x''''), s(s(s(s(y''''')))))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 12
↳Argument Filtering and Ordering
ACK(s(x''''), s(s(s(s(s(y''''')))))) -> ACK(s(x''''), s(s(s(s(y''''')))))
ACK(s(x'''), s(s(s(s(y''''))))) -> ACK(s(x'''), s(s(s(y''''))))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(x''''), s(s(s(y'''')))) -> ACK(s(x''''), s(s(y'''')))
ACK(s(x''''), s(s(s(s(0))))) -> ACK(s(x''''), s(s(s(0))))
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost
ACK(s(x''''), s(s(s(s(s(y''''')))))) -> ACK(s(x''''), s(s(s(s(y''''')))))
ACK(s(x'''), s(s(s(s(y''''))))) -> ACK(s(x'''), s(s(s(y''''))))
ACK(s(x'), s(s(s(s(y'''))))) -> ACK(s(x'), s(s(s(y'''))))
ACK(s(x''''), s(s(s(y'''')))) -> ACK(s(x''''), s(s(y'''')))
ACK(s(x''''), s(s(s(s(0))))) -> ACK(s(x''''), s(s(s(0))))
POL(ACK(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(s(x1)) = 1 + x1
ACK(x1, x2) -> ACK(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 13
↳Dependency Graph
ack(0, y) -> s(y)
ack(s(x), 0) -> ack(x, s(0))
ack(s(x), s(y)) -> ack(x, ack(s(x), y))
innermost