TRS
↳Dependency Pair Analysis
A(a(x)) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
B(b(a(x))) -> B(b(x))
B(b(a(x))) -> B(x)
TRS
↳DPs
→DP Problem 1
↳Modular Removal of Rules
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
A(a(x)) -> B(b(x))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
b(b(a(x))) -> a(b(b(x)))
a(a(x)) -> b(b(x))
POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = 1 + x1 POL(A(x1)) = x1
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
A(a(x)) -> B(b(x))
Innermost Termination of R successfully shown.
Duration:
0:00 minutes