R
↳Dependency Pair Analysis
A(a(x)) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
B(b(a(x))) -> B(b(x))
B(b(a(x))) -> B(x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
A(a(x)) -> B(b(x))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
one new Dependency Pair is created:
A(a(x)) -> B(b(x))
A(a(b(a(x'')))) -> B(a(b(b(x''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
A(a(b(a(x'')))) -> B(a(b(b(x''))))
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
B(b(a(x))) -> B(x)
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
one new Dependency Pair is created:
B(b(a(x))) -> A(b(b(x)))
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
A(a(x)) -> B(x)
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(b(a(x'')))) -> B(a(b(b(x''))))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
one new Dependency Pair is created:
B(b(a(x))) -> B(b(x))
B(b(a(b(a(x''))))) -> B(a(b(b(x''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Narrowing Transformation
B(b(a(b(a(x''))))) -> B(a(b(b(x''))))
A(a(b(a(x'')))) -> B(a(b(b(x''))))
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
B(b(a(x))) -> B(x)
A(a(x)) -> B(x)
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
one new Dependency Pair is created:
A(a(b(a(x'')))) -> B(a(b(b(x''))))
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
A(a(x)) -> B(x)
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
B(b(a(x))) -> B(x)
B(b(a(b(a(x''))))) -> B(a(b(b(x''))))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
one new Dependency Pair is created:
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
A(a(x)) -> B(x)
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
B(b(a(b(a(x''))))) -> B(a(b(b(x''))))
B(b(a(x))) -> B(x)
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
one new Dependency Pair is created:
B(b(a(b(a(x''))))) -> B(a(b(b(x''))))
B(b(a(b(a(b(a(x'))))))) -> B(a(b(a(b(b(x'))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Forward Instantiation Transformation
B(b(a(b(a(b(a(x'))))))) -> B(a(b(a(b(b(x'))))))
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
B(b(a(x))) -> B(x)
A(a(x)) -> B(x)
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
two new Dependency Pairs are created:
A(a(x)) -> B(x)
A(a(b(a(x'')))) -> B(b(a(x'')))
A(a(b(a(b(a(b(a(x''')))))))) -> B(b(a(b(a(b(a(x''')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Forward Instantiation Transformation
A(a(b(a(b(a(b(a(x''')))))))) -> B(b(a(b(a(b(a(x''')))))))
A(a(b(a(x'')))) -> B(b(a(x'')))
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
B(b(a(x))) -> B(x)
B(b(a(b(a(b(a(x'))))))) -> B(a(b(a(b(b(x'))))))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
two new Dependency Pairs are created:
B(b(a(x))) -> B(x)
B(b(a(b(a(x''))))) -> B(b(a(x'')))
B(b(a(b(a(b(a(b(a(x'''))))))))) -> B(b(a(b(a(b(a(x''')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 9
↳Argument Filtering and Ordering
A(a(b(a(x'')))) -> B(b(a(x'')))
B(b(a(b(a(b(a(b(a(x'''))))))))) -> B(b(a(b(a(b(a(x''')))))))
B(b(a(b(a(x''))))) -> B(b(a(x'')))
B(b(a(b(a(b(a(x'))))))) -> B(a(b(a(b(b(x'))))))
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
A(a(b(a(b(a(b(a(x''')))))))) -> B(b(a(b(a(b(a(x''')))))))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost
A(a(b(a(x'')))) -> B(b(a(x'')))
B(b(a(b(a(b(a(b(a(x'''))))))))) -> B(b(a(b(a(b(a(x''')))))))
B(b(a(b(a(x''))))) -> B(b(a(x'')))
B(b(a(b(a(b(a(x'))))))) -> B(a(b(a(b(b(x'))))))
A(a(b(a(b(a(x')))))) -> B(a(b(a(b(b(x'))))))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
A(a(b(a(b(a(b(a(x''')))))))) -> B(b(a(b(a(b(a(x''')))))))
b(b(a(x))) -> a(b(b(x)))
a(a(x)) -> b(b(x))
POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = 1 + x1 POL(A(x1)) = x1
A(x1) -> A(x1)
B(x1) -> B(x1)
a(x1) -> a(x1)
b(x1) -> b(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 10
↳Dependency Graph
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
innermost