R
↳Dependency Pair Analysis
ADMIT(x, .(u, .(v, .(w, z)))) -> COND(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
ADMIT(x, .(u, .(v, .(w, z)))) -> ADMIT(carry(x, u, v), z)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
ADMIT(x, .(u, .(v, .(w, z)))) -> ADMIT(carry(x, u, v), z)
admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y
innermost
ADMIT(x, .(u, .(v, .(w, z)))) -> ADMIT(carry(x, u, v), z)
POL(carry(x1, x2, x3)) = x1 + x2 + x3 POL(.(x1, x2)) = x1 + x2 POL(w) = 1 POL(ADMIT(x1, x2)) = 1 + x1 + x2
ADMIT(x1, x2) -> ADMIT(x1, x2)
.(x1, x2) -> .(x1, x2)
carry(x1, x2, x3) -> carry(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y
innermost