R
↳Dependency Pair Analysis
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
DEL(.(x, .(y, z))) -> ='(x, y)
F(true, x, y, z) -> DEL(.(y, z))
F(false, x, y, z) -> DEL(.(y, z))
='(.(x, y), .(u, v)) -> ='(x, u)
='(.(x, y), .(u, v)) -> ='(y, v)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
F(false, x, y, z) -> DEL(.(y, z))
F(true, x, y, z) -> DEL(.(y, z))
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Negative Polynomial Order
F(false, x, y, z) -> DEL(.(y, z))
F(true, x, y, z) -> DEL(.(y, z))
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
=(.(x, y), nil) -> false
=(nil, nil) -> true
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost
F(false, x, y, z) -> DEL(.(y, z))
=(.(x, y), nil) -> false
=(nil, nil) -> true
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
POL( F(x1, ..., x4) ) = x1 + x4 + 1
POL( false ) = 1
POL( DEL(x1) ) = x1
POL( .(x1, x2) ) = x2 + 1
POL( =(x1, x2) ) = 1
POL( true ) = 0
POL( and(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Neg POLO
...
→DP Problem 3
↳Negative Polynomial Order
F(true, x, y, z) -> DEL(.(y, z))
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
=(.(x, y), nil) -> false
=(nil, nil) -> true
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost
F(true, x, y, z) -> DEL(.(y, z))
=(.(x, y), nil) -> false
=(nil, nil) -> true
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
POL( F(x1, ..., x4) ) = x1 + x4 + 1
POL( true ) = 1
POL( DEL(x1) ) = x1
POL( .(x1, x2) ) = x2 + 1
POL( =(x1, x2) ) = 1
POL( false ) = 0
POL( and(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Neg POLO
...
→DP Problem 4
↳Dependency Graph
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
=(.(x, y), nil) -> false
=(nil, nil) -> true
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost