R
↳Dependency Pair Analysis
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
DEL(.(x, .(y, z))) -> ='(x, y)
F(true, x, y, z) -> DEL(.(y, z))
F(false, x, y, z) -> DEL(.(y, z))
='(.(x, y), .(u, v)) -> ='(x, u)
='(.(x, y), .(u, v)) -> ='(y, v)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
F(false, x, y, z) -> DEL(.(y, z))
F(true, x, y, z) -> DEL(.(y, z))
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost
four new Dependency Pairs are created:
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
DEL(.(nil, .(nil, z))) -> F(true, nil, nil, z)
DEL(.(.(x'', y''), .(nil, z))) -> F(false, .(x'', y''), nil, z)
DEL(.(nil, .(.(y'', z''), z))) -> F(false, nil, .(y'', z''), z)
DEL(.(.(x'', y''), .(.(u, v), z))) -> F(and(=(x'', u), =(y'', v)), .(x'', y''), .(u, v), z)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Instantiation Transformation
DEL(.(nil, .(.(y'', z''), z))) -> F(false, nil, .(y'', z''), z)
DEL(.(.(x'', y''), .(nil, z))) -> F(false, .(x'', y''), nil, z)
F(true, x, y, z) -> DEL(.(y, z))
DEL(.(nil, .(nil, z))) -> F(true, nil, nil, z)
F(false, x, y, z) -> DEL(.(y, z))
del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost
one new Dependency Pair is created:
F(true, x, y, z) -> DEL(.(y, z))
F(true, nil, nil, z'') -> DEL(.(nil, z''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
...
→DP Problem 3
↳Instantiation Transformation
DEL(.(.(x'', y''), .(nil, z))) -> F(false, .(x'', y''), nil, z)
F(true, nil, nil, z'') -> DEL(.(nil, z''))
DEL(.(nil, .(nil, z))) -> F(true, nil, nil, z)
F(false, x, y, z) -> DEL(.(y, z))
DEL(.(nil, .(.(y'', z''), z))) -> F(false, nil, .(y'', z''), z)
del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost
two new Dependency Pairs are created:
F(false, x, y, z) -> DEL(.(y, z))
F(false, .(x'''', y''''), nil, z'') -> DEL(.(nil, z''))
F(false, nil, .(y'''', z''''), z'') -> DEL(.(.(y'''', z''''), z''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
...
→DP Problem 4
↳Remaining Obligation(s)
F(false, nil, .(y'''', z''''), z'') -> DEL(.(.(y'''', z''''), z''))
DEL(.(nil, .(.(y'', z''), z))) -> F(false, nil, .(y'', z''), z)
F(true, nil, nil, z'') -> DEL(.(nil, z''))
DEL(.(nil, .(nil, z))) -> F(true, nil, nil, z)
F(false, .(x'''', y''''), nil, z'') -> DEL(.(nil, z''))
DEL(.(.(x'', y''), .(nil, z))) -> F(false, .(x'', y''), nil, z)
del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))
innermost