Term Rewriting System R:
[x, y, z]
del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))

Innermost Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)
DEL(.(x, .(y, z))) -> ='(x, y)
F(true, x, y, z) -> DEL(.(y, z))
F(false, x, y, z) -> DEL(.(y, z))
='(.(x, y), .(u, v)) -> ='(x, u)
='(.(x, y), .(u, v)) -> ='(y, v)

Furthermore, R contains one SCC.

R
DPs
→DP Problem 1
Argument Filtering and Ordering

Dependency Pairs:

F(false, x, y, z) -> DEL(.(y, z))
F(true, x, y, z) -> DEL(.(y, z))
DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)

Rules:

del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))

Strategy:

innermost

The following dependency pair can be strictly oriented:

DEL(.(x, .(y, z))) -> F(=(x, y), x, y, z)

The following usable rules for innermost can be oriented:

=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
nil > true
{F, .}
= > false

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2, x3, x4) -> F(x4)
DEL(x1) -> x1
.(x1, x2) -> .(x2)
=(x1, x2) -> =(x1, x2)
and(x1, x2) -> x2

R
DPs
→DP Problem 1
AFS
→DP Problem 2
Dependency Graph

Dependency Pairs:

F(false, x, y, z) -> DEL(.(y, z))
F(true, x, y, z) -> DEL(.(y, z))

Rules:

del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
f(true, x, y, z) -> del(.(y, z))
f(false, x, y, z) -> .(x, del(.(y, z)))
=(nil, nil) -> true
=(.(x, y), nil) -> false
=(nil, .(y, z)) -> false
=(.(x, y), .(u, v)) -> and(=(x, u), =(y, v))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes