Term Rewriting System R:
[y, x, u, v, z]
merge(nil, y) -> y
merge(x, nil) -> x
merge(.(x, y), .(u, v)) -> if(< (x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
if(true, x, y) -> x
if(false, x, y) -> x
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
MERGE(.(x, y), .(u, v)) -> IF(< (x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
MERGE(.(x, y), .(u, v)) -> MERGE(y, .(u, v))
MERGE(.(x, y), .(u, v)) -> MERGE(.(x, y), v)
++'(.(x, y), z) -> ++'(y, z)
Furthermore, R contains two SCCs.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
Dependency Pairs:
MERGE(.(x, y), .(u, v)) -> MERGE(.(x, y), v)
MERGE(.(x, y), .(u, v)) -> MERGE(y, .(u, v))
Rules:
merge(nil, y) -> y
merge(x, nil) -> x
merge(.(x, y), .(u, v)) -> if(< (x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
if(true, x, y) -> x
if(false, x, y) -> x
Strategy:
innermost
As we are in the innermost case, we can delete all 7 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
Dependency Pairs:
MERGE(.(x, y), .(u, v)) -> MERGE(.(x, y), v)
MERGE(.(x, y), .(u, v)) -> MERGE(y, .(u, v))
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- MERGE(.(x, y), .(u, v)) -> MERGE(.(x, y), v)
- MERGE(.(x, y), .(u, v)) -> MERGE(y, .(u, v))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
.(x1, x2) -> .(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
Dependency Pair:
++'(.(x, y), z) -> ++'(y, z)
Rules:
merge(nil, y) -> y
merge(x, nil) -> x
merge(.(x, y), .(u, v)) -> if(< (x, u), .(x, merge(y, .(u, v))), .(u, merge(.(x, y), v)))
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
if(true, x, y) -> x
if(false, x, y) -> x
Strategy:
innermost
As we are in the innermost case, we can delete all 7 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Size-Change Principle
Dependency Pair:
++'(.(x, y), z) -> ++'(y, z)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- ++'(.(x, y), z) -> ++'(y, z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
.(x1, x2) -> .(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes