R
↳Dependency Pair Analysis
NORM(g(x, y)) -> NORM(x)
F(x, g(y, z)) -> F(x, y)
REM(g(x, y), s(z)) -> REM(x, z)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
NORM(g(x, y)) -> NORM(x)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
NORM(g(x, y)) -> NORM(x)
POL(g(x1, x2)) = 1 + x1 + x2 POL(NORM(x1)) = x1
NORM(x1) -> NORM(x1)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
F(x, g(y, z)) -> F(x, y)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
F(x, g(y, z)) -> F(x, y)
POL(g(x1, x2)) = 1 + x1 + x2 POL(F(x1, x2)) = x1 + x2
F(x1, x2) -> F(x1, x2)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
REM(g(x, y), s(z)) -> REM(x, z)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
REM(g(x, y), s(z)) -> REM(x, z)
POL(g(x1, x2)) = 1 + x1 + x2 POL(REM(x1, x2)) = x1 + x2 POL(s(x1)) = x1
REM(x1, x2) -> REM(x1, x2)
g(x1, x2) -> g(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost