R
↳Dependency Pair Analysis
NORM(g(x, y)) -> NORM(x)
F(x, g(y, z)) -> F(x, y)
REM(g(x, y), s(z)) -> REM(x, z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
NORM(g(x, y)) -> NORM(x)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
one new Dependency Pair is created:
NORM(g(x, y)) -> NORM(x)
NORM(g(g(x'', y''), y)) -> NORM(g(x'', y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
NORM(g(g(x'', y''), y)) -> NORM(g(x'', y''))
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
one new Dependency Pair is created:
NORM(g(g(x'', y''), y)) -> NORM(g(x'', y''))
NORM(g(g(g(x'''', y''''), y''0), y)) -> NORM(g(g(x'''', y''''), y''0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
NORM(g(g(g(x'''', y''''), y''0), y)) -> NORM(g(g(x'''', y''''), y''0))
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
NORM(g(g(g(x'''', y''''), y''0), y)) -> NORM(g(g(x'''', y''''), y''0))
POL(g(x1, x2)) = 1 + x1 + x2 POL(NORM(x1)) = 1 + x1
NORM(x1) -> NORM(x1)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
F(x, g(y, z)) -> F(x, y)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
one new Dependency Pair is created:
F(x, g(y, z)) -> F(x, y)
F(x'', g(g(y'', z''), z)) -> F(x'', g(y'', z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
F(x'', g(g(y'', z''), z)) -> F(x'', g(y'', z''))
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
one new Dependency Pair is created:
F(x'', g(g(y'', z''), z)) -> F(x'', g(y'', z''))
F(x'''', g(g(g(y'''', z''''), z''0), z)) -> F(x'''', g(g(y'''', z''''), z''0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
F(x'''', g(g(g(y'''', z''''), z''0), z)) -> F(x'''', g(g(y'''', z''''), z''0))
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
F(x'''', g(g(g(y'''', z''''), z''0), z)) -> F(x'''', g(g(y'''', z''''), z''0))
POL(g(x1, x2)) = 1 + x1 + x2 POL(F(x1, x2)) = 1 + x1 + x2
F(x1, x2) -> F(x1, x2)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳FwdInst
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
REM(g(x, y), s(z)) -> REM(x, z)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
one new Dependency Pair is created:
REM(g(x, y), s(z)) -> REM(x, z)
REM(g(g(x'', y''), y), s(s(z''))) -> REM(g(x'', y''), s(z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
REM(g(g(x'', y''), y), s(s(z''))) -> REM(g(x'', y''), s(z''))
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
one new Dependency Pair is created:
REM(g(g(x'', y''), y), s(s(z''))) -> REM(g(x'', y''), s(z''))
REM(g(g(g(x'''', y''''), y''0), y), s(s(s(z'''')))) -> REM(g(g(x'''', y''''), y''0), s(s(z'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
REM(g(g(g(x'''', y''''), y''0), y), s(s(s(z'''')))) -> REM(g(g(x'''', y''''), y''0), s(s(z'''')))
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost
REM(g(g(g(x'''', y''''), y''0), y), s(s(s(z'''')))) -> REM(g(g(x'''', y''''), y''0), s(s(z'''')))
POL(g(x1, x2)) = 1 + x1 + x2 POL(REM(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1
REM(x1, x2) -> REM(x1, x2)
g(x1, x2) -> g(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
innermost