R
↳Dependency Pair Analysis
REV(.(x, y)) -> ++'(rev(y), .(x, nil))
REV(.(x, y)) -> REV(y)
++'(.(x, y), z) -> ++'(y, z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
++'(.(x, y), z) -> ++'(y, z)
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
one new Dependency Pair is created:
++'(.(x, y), z) -> ++'(y, z)
++'(.(x, .(x'', y'')), z'') -> ++'(.(x'', y''), z'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
++'(.(x, .(x'', y'')), z'') -> ++'(.(x'', y''), z'')
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
one new Dependency Pair is created:
++'(.(x, .(x'', y'')), z'') -> ++'(.(x'', y''), z'')
++'(.(x, .(x'''', .(x''''', y''''))), z'''') -> ++'(.(x'''', .(x''''', y'''')), z'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
++'(.(x, .(x'''', .(x''''', y''''))), z'''') -> ++'(.(x'''', .(x''''', y'''')), z'''')
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
++'(.(x, .(x'''', .(x''''', y''''))), z'''') -> ++'(.(x'''', .(x''''', y'''')), z'''')
POL(++'(x1, x2)) = 1 + x1 POL(.(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
REV(.(x, y)) -> REV(y)
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
one new Dependency Pair is created:
REV(.(x, y)) -> REV(y)
REV(.(x, .(x'', y''))) -> REV(.(x'', y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
REV(.(x, .(x'', y''))) -> REV(.(x'', y''))
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
one new Dependency Pair is created:
REV(.(x, .(x'', y''))) -> REV(.(x'', y''))
REV(.(x, .(x'''', .(x''''', y'''')))) -> REV(.(x'''', .(x''''', y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
REV(.(x, .(x'''', .(x''''', y'''')))) -> REV(.(x'''', .(x''''', y'''')))
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost
REV(.(x, .(x'''', .(x''''', y'''')))) -> REV(.(x'''', .(x''''', y'''')))
POL(REV(x1)) = 1 + x1 POL(.(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))
innermost