Term Rewriting System R:
[x, y, z]
implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))
IMPLIES(x, or(y, z)) -> IMPLIES(x, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

IMPLIES(x, or(y, z)) -> IMPLIES(x, z)
IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))


Rules:


implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IMPLIES(x, or(y, z)) -> IMPLIES(x, z)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(or(x1, x2))=  1 + x2  
  POL(not(x1))=  0  
  POL(IMPLIES(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pair:

IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))


Rules:


implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(or(x1, x2))=  x1  
  POL(not(x1))=  1 + x1  
  POL(IMPLIES(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes