R
↳Dependency Pair Analysis
IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(z, u, v)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
IF(if(x, y, z), u, v) -> IF(z, u, v)
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
if(true, x, y) -> x
if(false, x, y) -> y
if(x, y, y) -> y
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
innermost
six new Dependency Pairs are created:
IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
IF(if(x, true, z), u, v) -> IF(x, u, if(z, u, v))
IF(if(x, false, z), u, v) -> IF(x, v, if(z, u, v))
IF(if(x, if(x'', y'', z''), z), u, v) -> IF(x, if(x'', if(y'', u, v), if(z'', u, v)), if(z, u, v))
IF(if(x, y, true), u, v) -> IF(x, if(y, u, v), u)
IF(if(x, y, false), u, v) -> IF(x, if(y, u, v), v)
IF(if(x, y, if(x'', y'', z'')), u, v) -> IF(x, if(y, u, v), if(x'', if(y'', u, v), if(z'', u, v)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
IF(if(x, y, if(x'', y'', z'')), u, v) -> IF(x, if(y, u, v), if(x'', if(y'', u, v), if(z'', u, v)))
IF(if(x, y, false), u, v) -> IF(x, if(y, u, v), v)
IF(if(x, if(x'', y'', z''), z), u, v) -> IF(x, if(x'', if(y'', u, v), if(z'', u, v)), if(z, u, v))
IF(if(x, true, z), u, v) -> IF(x, u, if(z, u, v))
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(z, u, v)
if(true, x, y) -> x
if(false, x, y) -> y
if(x, y, y) -> y
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
innermost