Term Rewriting System R:
[x, y]
or(x, x) -> x
and(x, x) -> x
not(not(x)) -> x
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
NOT(and(x, y)) -> OR(not(x), not(y))
NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(or(x, y)) -> AND(not(x), not(y))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
Rules:
or(x, x) -> x
and(x, x) -> x
not(not(x)) -> x
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
Strategy:
innermost
As we are in the innermost case, we can delete all 5 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- NOT(or(x, y)) -> NOT(y)
- NOT(or(x, y)) -> NOT(x)
- NOT(and(x, y)) -> NOT(y)
- NOT(and(x, y)) -> NOT(x)
and get the following Size-Change Graph(s): {1, 2, 3, 4} | , | {1, 2, 3, 4} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {1, 2, 3, 4} | , | {1, 2, 3, 4} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
and(x1, x2) -> and(x1, x2)
or(x1, x2) -> or(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes