R
↳Dependency Pair Analysis
PRIME(s(s(x))) -> PRIME1(s(s(x)), s(x))
PRIME1(x, s(s(y))) -> DIVP(s(s(y)), x)
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
innermost
one new Dependency Pair is created:
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
PRIME1(x'', s(s(s(y'')))) -> PRIME1(x'', s(s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
PRIME1(x'', s(s(s(y'')))) -> PRIME1(x'', s(s(y'')))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
innermost
one new Dependency Pair is created:
PRIME1(x'', s(s(s(y'')))) -> PRIME1(x'', s(s(y'')))
PRIME1(x'''', s(s(s(s(y''''))))) -> PRIME1(x'''', s(s(s(y''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Argument Filtering and Ordering
PRIME1(x'''', s(s(s(s(y''''))))) -> PRIME1(x'''', s(s(s(y''''))))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
innermost
PRIME1(x'''', s(s(s(s(y''''))))) -> PRIME1(x'''', s(s(s(y''''))))
POL(PRIME1(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
PRIME1(x1, x2) -> PRIME1(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
innermost