Term Rewriting System R:
[x, y]
dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

DFIB(s(s(x)), y) -> DFIB(s(x), dfib(x, y))
DFIB(s(s(x)), y) -> DFIB(x, y)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

DFIB(s(s(x)), y) -> DFIB(x, y)
DFIB(s(s(x)), y) -> DFIB(s(x), dfib(x, y))


Rule:


dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

DFIB(s(s(x)), y) -> DFIB(x, y)
DFIB(s(s(x)), y) -> DFIB(s(x), dfib(x, y))


The following usable rule for innermost w.r.t. to the AFS can be oriented:

dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
DFIB > dfib

resulting in one new DP problem.
Used Argument Filtering System:
DFIB(x1, x2) -> DFIB(x1, x2)
s(x1) -> s(x1)
dfib(x1, x2) -> dfib(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rule:


dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes