Term Rewriting System R:
[x, y]
f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(s(x))) -> P(h(g(x)))
F(s(s(x))) -> H(g(x))
F(s(s(x))) -> G(x)
F(s(s(x))) -> +'(p(g(x)), q(g(x)))
F(s(s(x))) -> P(g(x))
F(s(s(x))) -> Q(g(x))
G(s(x)) -> H(g(x))
G(s(x)) -> G(x)
G(s(x)) -> +'(p(g(x)), q(g(x)))
G(s(x)) -> P(g(x))
G(s(x)) -> Q(g(x))
H(x) -> +'(p(x), q(x))
H(x) -> P(x)
H(x) -> Q(x)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

+'(x, s(y)) -> +'(x, y)
one new Dependency Pair is created:

+'(x'', s(s(y''))) -> +'(x'', s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pair:

+'(x'', s(s(y''))) -> +'(x'', s(y''))


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

+'(x'', s(s(y''))) -> +'(x'', s(y''))
one new Dependency Pair is created:

+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Polynomial Ordering
       →DP Problem 2
FwdInst


Dependency Pair:

+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(+'(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
FwdInst


Dependency Pair:


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation


Dependency Pair:

G(s(x)) -> G(x)


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(s(x)) -> G(x)
one new Dependency Pair is created:

G(s(s(x''))) -> G(s(x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
Forward Instantiation Transformation


Dependency Pair:

G(s(s(x''))) -> G(s(x''))


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

G(s(s(x''))) -> G(s(x''))
one new Dependency Pair is created:

G(s(s(s(x'''')))) -> G(s(s(x'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 7
Polynomial Ordering


Dependency Pair:

G(s(s(s(x'''')))) -> G(s(s(x'''')))


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(s(s(s(x'''')))) -> G(s(s(x'''')))


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(G(x1))=  1 + x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes