R
↳Dependency Pair Analysis
FAC(0) -> 1'
FAC(s(x)) -> *'(s(x), fac(x))
FAC(s(x)) -> FAC(x)
FLOOP(s(x), y) -> FLOOP(x, *(s(x), y))
FLOOP(s(x), y) -> *'(s(x), y)
*'(x, s(y)) -> +'(*(x, y), x)
*'(x, s(y)) -> *'(x, y)
+'(x, s(y)) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
+'(x, s(y)) -> +'(x, y)
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
one new Dependency Pair is created:
+'(x, s(y)) -> +'(x, y)
+'(x'', s(s(y''))) -> +'(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
+'(x'', s(s(y''))) -> +'(x'', s(y''))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
one new Dependency Pair is created:
+'(x'', s(s(y''))) -> +'(x'', s(y''))
+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
*'(x, s(y)) -> *'(x, y)
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
one new Dependency Pair is created:
*'(x, s(y)) -> *'(x, y)
*'(x'', s(s(y''))) -> *'(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
*'(x'', s(s(y''))) -> *'(x'', s(y''))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
one new Dependency Pair is created:
*'(x'', s(s(y''))) -> *'(x'', s(y''))
*'(x'''', s(s(s(y'''')))) -> *'(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
*'(x'''', s(s(s(y'''')))) -> *'(x'''', s(s(y'''')))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
*'(x'''', s(s(s(y'''')))) -> *'(x'''', s(s(y'''')))
POL(*'(x1, x2)) = 1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳Polo
FAC(s(x)) -> FAC(x)
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
one new Dependency Pair is created:
FAC(s(x)) -> FAC(x)
FAC(s(s(x''))) -> FAC(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 4
↳Polo
FAC(s(s(x''))) -> FAC(s(x''))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
one new Dependency Pair is created:
FAC(s(s(x''))) -> FAC(s(x''))
FAC(s(s(s(x'''')))) -> FAC(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 12
↳Polynomial Ordering
→DP Problem 4
↳Polo
FAC(s(s(s(x'''')))) -> FAC(s(s(x'''')))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
FAC(s(s(s(x'''')))) -> FAC(s(s(x'''')))
POL(FAC(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
→DP Problem 4
↳Polo
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polynomial Ordering
FLOOP(s(x), y) -> FLOOP(x, *(s(x), y))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost
FLOOP(s(x), y) -> FLOOP(x, *(s(x), y))
POL(0) = 0 POL(*(x1, x2)) = 0 POL(s(x1)) = 1 + x1 POL(FLOOP(x1, x2)) = x1 POL(+(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Polo
→DP Problem 14
↳Dependency Graph
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)
innermost